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ARSTRACT 
-

L 

‘
N
• ARGOS Is an image understanding system. II buIlds a three-dimensional model of the

task domain and uses hypothesized two-dimensiona l v iews of the model to label
images. It curren tly achieves less than 202 error by area when libeli ng real-world
(city of Pittsburg h) photographs with a knowledge bas. of over fifty objects. In
addi tIon, the system can determine the angle of view around the city with
approximately 40 degrees of error.

Th. labeli ng technique used by ARGOS is called Locus search. Locus is a non-
backtracking graph search technique in wh ich a beam of near-miss alternat ives around
the best path are extended In parallel through the graph. After the graph has been
searched In breadth-first order , the beam of possibil ities I. examined in reverse order
to extract a near-optimal path. This path defines a labeli ng of the image and is only
sub—optima l because of the pruning heuristics used In the beam creation. >

Locus search has been used in the interpretation of speech (Low .rrs , 1976). Its
impl,i~ientatlon in the image understandi ng tas k requi res major modlf lcat láns dueAo the
non,41in.arity 9f the signal. Instead of implementing a form of a first-order ’ Markov
search which t relles on only one previous node in the beam (as the sp iech system
does), ARGOS implements ar~ adjacency f irst -or*r Markov system tha t relies on oil
surrounding-’ nodes In the physic al image.

This thesis formulates image understanding as a problem of search; shows how Locus
search can be used to label images ; describes the many sources of knowledge used in
the interpretation; shows how knowle dge represented as a network can be used to
constrain the searc r~ explores extensions to the use of knowledge; and presents the
experimental results of ARGOS. Its main contributions are the demonst ration that
Locus search can be used for image understanding and the exploration of Issues
Involved in this use.

H --_ _  _ _
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CHAPTER 1: INTRODUCTION

1 his thesis is about ARGOS, a computer program that can understand Images. The
term image understanding means that the program can identify the major components
of a scene by using knowledge about th. structure of the scene. For example, ARGOS
is able to use a map of downtown Pittsburgh to aid In the IdentIfication of the major
buildings, rivet ’s , etc. in photographs of the city.

Th. technique that ARGOS uses to identify, or label, these images is called Locus
search. Locus is a powerful search technique that uses a recursively defined
evaluation function to scan an image while using networks of knowledge about the
scene to constrain the search. Af ter the image has been scanned once, Locus is able
to extract picture labels from the results of th. search.

One of the significant features of Locus search is its ability to use many diverse
sources of scene knowledge when labeling images. Not only is It able to use
information about the positions of the buildings, but it also knows thefr size, shape, and
environment. In general, It is expected that Locus search can be a useful technique in
applications where knowledge is used to attain goals.

This thesis, therefore, has two contributions. First, it presents a detailed discussion of
Locus search as it applies to the image interpretation problem. Some of the new

- issues that arise from this implementation are the modification of the Markov -

assumption used by Locus and the hierarchical application of knowledge networks.
These changes are necessary due to the topological complexity of the signal (i.e.
images are two-dimensional) and the immense amount of knowledge needed by a
complex vision system. The second arid more significant contribution is ARGOS: a
working image understandIng system that can deal with real-world scenes. ARGOS is
also important because it works from an internal three-dImensIonal model of the task
environment.

5
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1.1: IMAGE UNDERSTANDING

Image understanding is defined as the application of knowledge to the task of
interpreting an image. This application consists of finding a match between the
knowledge and the image. Once the match has been made, the image Is both
interpreted and understood. It Is interpreted because it has been linked to the
knowledge and therefore Is labeled with knowledge-based descriptions. The image Is
also understood because it is possible to extrapolate the interpretation knowledge.

For example, ARGOS has knowledge about Pittsburg h. To understand a new image, it
must find a match between that image and the Pittsburgh knowledge. This match will
consist of pairings that link areas of the image with objects In the knowledg e (i.e. “the
area at the top is ~~~ the area at the bottom is Mononeahela River. the area to the
left  of center is 

~~!2fl ~~4 etc.”). With the results of this match, It is possible to - . - 
-

delve farther into the knowledge and make statements that are not explicitly In the
image (“this view is from Mount Washington”). It is this ability that makes ARGOS an
image understanding system.

In gene ral, the image interpretation process has three components: the Image, the
knowledge, and the match. The image is often refered to as the signal and the
knowledge is the symbol. The match is therefore a signal-to-symbol match. The next
section examines a number of image Interpretation systems in these terms.

1.2: OTHER SYSTEMS

Th. table below lists a few image interpretation and image understandi ng systems in
terms of their signal, symbol, and match. Each system is described more fully In the
next sections.

Symbol Match
Barrow and Segment Relational Network Heuristic Search
Poppl.stone

Fischler and Segment Relational Network Unear Embedding
Elschlager (DynamIc Programming )

Feldman and Piwsi Relational Best -First
Yaklmovsky Probabilities

Tenenbau,n and 
‘ 

Pixel Relations Relaxation
Barrow (IGS~
Sakal ci. ii. Segment Semantic Network Data-driven Search

(Knowledge Blocks)

6
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Keng and Fu Bit Pattern Grammar Bottom-up Parse

Perkins Lines and Curves Lines and Curves Brute Force

Walt z Lines and Shadows JunctIon Ulctionary Relaxation

Uackworth Lines Relational Network Relaxation
(MAPSEE)

Ballard at. al. Lines, Segments, Semantic Network Arbitrary
S Pixels, •tc.

Williams et. at . Segments Semantic Network Best-First
(V ISIONS)

Rubin (ARGOS) Pixel or Segment Relational Network Beam Search

12.1: Barrow and Popplestons 
.

Barrow and Popplestone (1971) divide their Images into segments. A coffee cup, for
example , is broken down into three segments: the outside of the cup, the Inside of the
cup, arid the hole in the handle. These three segments compose the signal description
of the cup.

The symbolic knowle dge consists of a relational network. Nodes in the network are
reg ion names and arcs that connect nodes are “facts ” about the regions. For example,
a knowledge network that describes the previously mentioned coffee cup will have
three nodes for the Inside. outside, and b9~g. regions. The arc which connects the
outside region and the l~

jg region will contain the fact that the outside region
completely surrounds the ~~~ region. In addition, each node contains descr iptive
knowledge which enables the system to help identify the proper segment (I.. the ~~~region is a ssv~all and highl y compact segment ).

The most obvious match process requires the evaluation of all of the segments against
each node in the knowledg,fr network. Even with only three segments and three nodes
there is a possibility of 3h5~ 27 different ways to Interpret the Image. Therefore the
match technique Is Important not only for accuracy but also for space arid time savings.
Barrow and Popplestone use the heuristic search technique which views the space of
segment -node alternat ives as a search tree. It then searches this tree using details
from the knowledge network to guide the search. Assume that - the “trunk” of the
search tree branches three ways to indicate the three pairings: (segment I Is inside),
(segment I I, outside), and (segment 1 Is 

~2!t). Each of these branches divides three
ways to list the poss ibilities for segment 2 and each of the nine segment 2 branches
splits three more ways for the segment 3 options. If , however, segment 2 Ii
surrounded by segment 1 in the image, t h n  the search process need not examIne alt —

i

.
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nine possibilities for segment 2, just those possibilities which satisf y the knowledge
constraint of containment. Thus, heuristIc search is able to prune large portIons of the
search tree by examining only the match possibilities suggested by the symbolic
knowledge.

The disadvantage of heuristic search is that it still must examine all feasible
possibilities. Locus search goes one step further in its pruni ng by evaluatIng each
path arid examining only the most likely of the feasible alternatives.

1.2.2: FischIer and Elschtager

Fischler and Elschlager (1973) also use image segments and relational knowledge
networks. The networks consist of numerical “springs” which connect region nodes.
These springs must be compressed and expanded by the match process to find the
overall set of labels that has the least spring “tension”. The match process uses a
form of dynamic programming (Bellman and Dreyf us, 1962) which does not suffer from
the combinatorial explosion of tree searching. Their match, called the Linear
Embedding Algorithm, prunes all but a constant number of search tree nodes at each
level. This match may fail to find the globally optimal interpretation, but it is efficient.
In addition, it allows for noisy data by accepting highly “stretched” springs in the final
labeling. - 

-

The reduction of the search space to a linear growth is the same philosophy used by
Locus. The difference is that Locus uses a dynamic threshold to admit the most likely
nodes within the fixed growth limit. Therefore, growth of the search space is variable
but linearly bounded.

1.2.3: Feldman and Yaklmovsky
- Feldman and Yakimovsky (1974) use relational probability knowledge to guide the

iso lation and identi fi cation of segments. The image starts as a collection of picture
elements (pixels) which are organized as a rectangular grid of points. The system
combines pixels into segments by breaking down the boundaries between areas of the
image that are similar. It uses a probabilistic utility function of the signal and the
symbol to com pute the most probable boundary to break. This best-first control
structure proceeds until a stopping criteria is reached at which time the Image Is
segmented and labeled. The most interesting aspect of- this system Is its use of
Bayes ian decision theory In computing the utility functIon.

Locus does not explicitly segment images. It labels each point purely on the basis of
context knowledge. The final labeling may be used to define a segmentation by
observing groups of similar labels, but that 1* only i by-product.

- .
- 

- - 
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Another difference between this work and Locus is formality. Locus does riot follow
the rules of decision theory very closely: it prunes and approximates frequently. The
result is a pse udo-statistical system that is only formal within heuristic bounds.

1.2. 4: Tenenbaum and Barrow

Tenenbaum and Barrow (1976) apply relational knowledge to the segmentation and
interpretation task. Their system starts by crudely segmenting on the basis of pixel
similarity and then making a set of labels for each segment. It then applies Iterative
relaxation to get a consistent label a refined segmentation of the image. Relaxation
works by repeatedly evaluating the junctions of segments and revising segment
borders and labels on the basis of relational constraints. Each pass of the relaxation
operation revises the list of possible segment labels on the basis of the surrounding

• segme nt label lists. For example , if a large segment with the label options ~~j and -

d~~ surrounds a small segment with the label options window and doorknob,. and one
iteration of relaxation eliminates the ~~~ option, then the next iteration wilt eliminate
the doorknob option. Thus, global knowledge can prop agate through the image as the
relaxation iterates. The final labeling is obtained when the relaxation converges and
yields no further change to the interpret ation.

The problem with relaxation techniques is they do not guarantee convergence and so
do not hive well defined termination cr iteria.

I 1.2.5: Sekei, Kenade, and Ohta

Sakal ci . al (1976) label image segments using a sop histicated know ledge network that
can contain procedural code and arbitrary knowledge constraints. These “knowledge
blocks ar. applied first to key segments in the image. Since the knowledge blocks
can have control sectIons, they do the bulk of the search. Thus, instantiation of a

S knowledge block can lead to th, hypothesis , ver ification , and rejection of other
• knowledge blocks. The contro l procedur , simply runs through the list of untested

blocks until there are no more , at which time the interpr etation Is complete. Although
this system Is fairly sophisticated, it suffers from the complexity of its data which must
be carefuily constructed.

1.2.6: K.ng and Fu

Keng and Fu (1976) have a system which interprets satellite images by matching the
binary patterns in windows of the Image to templates in a grammar-style knowledge

• 9
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base. Each window of 8x8 points in the image is compared with every known template
in the grammar. Windows which evoke multiple templates are reduced with the
grammar to a unique label. If, for example, a window contains two intersecting lines,
each of which matches a highway template , then the grammar will generate a highway
intersection interpretation for the window. The system uses no global constraining
and relies heavily on its knowledge of the sensor characteristics of Landsat satellites. -

—

1.2. 7: Perkins
S 

At General Motors, Perkins (1977) identifies parts on a conveyor belt by comparing
their outlines to those in the knowledge base. Outlines consist of curves and straight
lines which he calis concurves. A scoring algorithm counts the number of concurves in
the image which match those in known parts. Since the system looks for relative
scores, it can accept noisy data and occluded objects. The system is even able to
extrapolate on partial matches and predict the complete placement of occluded parts
and parts that are only partially in the field of view. However, the task domain Is
limited and the system would suffer from combinatorial explosion if it handled complex
scenes. This is because it uses no heuristics to limit the search space: identification
requires the comparison of all concurves in the image with all concurves in the
knowledge base.

1.2.8: Waltz

Waltz (1975) matches knowledge in a list of rules to an image that consists of lines. In
addition, each segvsent enclosed by lines can be shaded (a shadow) or unshaded. The
knowledge base contains alternative interpretations for the various line junction types.
Match is done with a form of relaxation that iteratively compares junction
interpretations at the ends of each line segment. After the system has converged, the
junction interpretations are used to label the surfaces and explain the shadows.

The system works in the blocks-world domain where perfect lighting makes shadows
trivial to distinguish. ARGOS uses real-world scenes which are full of shadows that are
hard to detect. However, the goal of Walt z’s work is to explain shadows whereas the
goal of ARGOS is to explore a search technique, so there is no fair basis for

• comparison.

1.2. 9: Meckworth

Mackworth (1977) uses relaxat ion on a relational knowledge network. HIs input signal

l0
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is a sketchmap” which consists of chains of lines. Some chains are closed and form
lakes and islands. Others are open and form rivers and roads. The system initially
makes many weak pairings of labels to chains and then refines the pairings using a
network consistency algorithm. This algorithm simply re-evaluates the pairing options
based on each chain’s environment. The system eventually converges on an
interpretation of the image. It is interesting to note that an initially noisy image can
be interpreted many times by using the final results of the first interpretation to
refine the sketchmap. The entire process is then repeated for a better overall
interpretation.

1.2.10: Ballard, Brown, and Feldman

Ballard et. a). (1977) use a semantic network that describes the scene at several levels
(region relations, pixel adjacencies, line lengths, etc.). Each image is also described at
many levels as a collection of lines, segments, volumes, etc. The user of the system
codes a query procedure using a control structure of his own choosing which explores
the semantic network and builds an instantiation of the network that corresponds to
the image. This instantiation, called a ~sketchmap” (not to be confused with
Mackworth’s sketchmaps) is an interpretation that links parts of the image to parts of
the semantic network. An example of a query procedure that has been built is a rib
matcher for chest X-rays. This procedure uses cost functions to numerically determine
the best match of signal-to-symbol. Although it would be possible to code Locus in
this framework, very few alternative search strategies have actually been explored.

1.2.11: Williams, Lowrance, Hanson, and Riseman

Williams et. al. (1977) describe an ambitious effort to apply multiple sources of
knowledge to a segmented image. Their knowledge base is a semantic network of
knowledge sources that are linked hierarchically in the same manner as the Hearsay II
speech system (Erman and Lesser, 1975). It deals with the image on many levels of
representation including lines, segments, and frames (Minsky, 1975). Control is divided
among the many knowledge sources which repeatedly hypothesize and verify signal—
to-symbol matches In a best-first search order. There are even knowledge sources
that guide other knowledge sources by focusing the system ’s attention.

Locus attempts to unify many knowledge sources into one so that a single control
structure can be applied. It rejects the notion that multiple sources of knowledge must
be used Independently.

11
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1.3: LOCUS SEARCH

ARGO.~ uses Locus search to interpret images. Locus was first used in the Harpy
speech understanding system (Lowerre, 1976). Harpy uses this technique on the
recognition of spoken utterances and is currently the best speech recognition system
in existence. Prior to Harpy, Dragon (Baker, 1975) used a breadth first graph
searching technique to attain the same goal.

Dragon is the theoretical grandfather of ARGOS. It uses a probabilistIc function of a
Markov model to find an optimal path through a knowledge network. The technique is

- very similar to the Viterbi Algorithm (Forney, 1973). Harpy relaxes the formalit y of
the probabilistic function and demonstrates that heuristics can be used to improve the
search. ARGOS goes one step further by modifying the Markov assumption so that the
multi-dimensionality of images can be handled. Instead of requiring that a first-order
Markov system rely on only one previous node In the search tree, ARGOS Implements
an “ adjacency first- order ” Markov system that relies on aLL surrounding nodes in the
image.

Before proceeding, It is useful to stop for a moment and examine ARGOS In the light of
the signal-to-symbol match paradigm of the previous section. In Locus, the symbolic
knowledge is composed of units called Primitive Picture Elements (PPEs). These PPEs
are organized into relational networks which specify knowledge about a scene. In
addition, PPEs have signal characteristics associated with them so that they may be
directly compared with parts of the image. ARGOS does not place any constraint on

S 
- 

the nature of the signal, which is why it Is able to interpret both pre-sagmen led
images and unsegmented images.

Pixel Pixel Pixel ~ixeI S~ m,M

Pixel Pixel Pixel Pixel S.~mmt

Unsegmented Image Pro-segmented-Image

Although th. signal is frequently refered to as a pixel, It should be understood that
ARGOS can deal with either pixels or arbitrarily shaped segments.

A simple example of PPE selection is in order. Assume that Locus must match a
satellite image of a field to a knowledge base which contains information about crop
locations. Locus would define each crop to be a PPE so that a relational network cou ld
be built describi ng the crop locations. Similarly, each of the crop PPEs would have
signal characteristics that allow it to be matched with the image (1... “the alfalfa PPE
registers 4 on a brightness scale of 1 to 101. Thus, PPEs are the common ground • 

-

between signa l and symbol.

The match aspect of Locus Is a two-pass search process that exp lores the space of
signal-to—symbol pairings. The first pass of the search, called the forward pass ,

0’~12
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constructs a highly pruned tree of alternative pairings. Each level of this search tree
corresponds to a different pixel in the image, and the various nodes at each level are
the alternative PPE labels for that pixel. The selection of tree entries (which are likely

• PPEs for a given pixel) is based on a recursively defined evaluation function. This
function uses knowledge from the network, the image, and the Immediat. environment
of the search tree to determine a uniform evaluation of a signet-to-symbol match. The

- 
. completed search tree contains a multitude of pixel-to-PPE matches, sock of which

identifies a p ath of “optiniat’ pixeL-to-PPE matches above St in th. tree. The second
pass of Locus search , called the backtrace, simply re-examines the search tree from

• the bottom up, gathering the optimal pixel-to-PPE matches into a unique labeling of the
image. Because of the Markov nature-of the forward pass, the backtrace is able to
bring global constraint to bear in the final selection of image labels.

It Is interestIng to note that the search tree built by the forward pass Is so highly 
-

pruned that it resembles a varying sized beam of alternatives and is sometimes called
• the “beam”. The beam is functionally equivalent to the stack of alternatives generated
• by standard backtracking search algorithms: they both list the options that are under

consideration. However, beam search is superior to backtracking methods because it
avoids thrashing behavior.

1.4: ARGOS

ARGOS Interprets pictures of downtown Pittsburgh. Fifteen of these pictures ,
reproduced in Appendix I, were taken from five vant age points around the city. To
enhance variability, some were shot with a standard 50mm. lens and others were taken
with a 28mm. wide-angle lens. Seven were used for training and the other eight were
saved f or test purposes. In the following table of images, the column labeled “Number

• of Objects” is the number of different regions that were identified during human
labeling.

- - mate Vantate Point ~~~ Number of Obiects
Training 1 Northwest 28mm. 17
TrainIng 2 Northwest 28mm. 19
TrainIng 3 Northeast 28mm. 17
Trainin g 4 West 50mm. 26
Training 5 West 28mm. 27
Training 6 Downtown 28mm. 9
Traini ng 7 Southwe,t 28mm. 27
Test 1 Northwest 50mm. 16
Test 2 Northwest 28mm. 17
Test 3 - Northwest 50mm. 15
Test 4 - Northeast 50mm. 15
Test 5 Southwest 50mm. 13
Test 6 Southwes t 50mm. 19
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Test 7 Southwest 50mm. 21
Test 8 Downtown 28mm. 7

Each image was originally digitized into a rectangular grid of 700 pixels across and
525 pixels down. However, ARGOS Interprets reduced versions of those Images that
are 75 by 100 pixels In size. It can also Interpret Images that have been divided Into
arbitrarily shaped segments.

• The system runs on a PDP-KLIO computer and requires approximately 100,000 words
of 36—bit memory. The largest part of this space is used to store the paral lel search
paths (typically 25 paths)~ It takes about five minutes of processor time to label one
75 by 100 image, but less than a minute to label a pre-segmented image.

1.5: READING THIS THESIS -

The next chapter discusses Locus search in great detail. It starts by explaining how
image understanding can be formulated as a problem of search. From there, it
describes the organization of the knowledge networks that are used in ARGOS.

- 
Following that Is a discussion of the low-level system in ARGOS: the techniques used to
give signal characteristics to PPEs. Finally comes a detailed explanation of the search
arid an example of the entire process.

Chapter 3 discusses how many different knowledge sources can be used with Locus
search. In addition to expounding upon obje ct adjacency and image pre-segmentation,
the chapter discusses the use of object size, shape, and location.

Chapter 4 discusses how knowledge can be organized hierarchically to Infinitely
expand the power of Locus. Most of this chapter is speculation, but it does conclude
with a review of where ARGOS stands in its hierarchical use of knowledge.

Chapter 5 describes the initial experimental results that were obtained with ARGOS.
The system is currently able to label the fifteen city scenes with 20Z error at the
pixel level. It can also determine the angle of view around the city with an average

• error of 40°. Considering the complexity of the knowledge and the images, this Is
- quite good.

Chapter 6 concludes the thesis by evaluating the results of ARGOS.
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CHAPTER 2: LOCLS SEARCH ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ihis chapter describes the Locus model of search as It is used In the Image
LMdersta nding task. Locus is an effIcient , non-backtracking search technique that has
proved itself suc cessful in the Harpy speech understanding system (Lower re & Reddy ,
1977). It is able to provide near-optimal solutions to the network search problem In

• tIme that is linearly bounded by the complexity of the input signal.

This chap ter discusses the search technique in detail. The first section describes the
representation used by Locus to describe imiges and knowledge networks.

• The next section is a discussion of the knowledge networks that are employed.
Coupled with this discussion is an explana tion of why image Interpretation is treated as

- • 
a problem of search.

Follow ing that is a discussion of the low-level processing that is done in ARGOS. This
thesis is not specifically concerned with the low- level aspect of image Interpretation ,
so the di;cussion is somewhat curs ory.

An explanat ion of t he search process follows next. Since application of the search
technique to Image Interpretation is one of the main contributions of this thesis, the
discussion is quite long and contains many examples.

The chapter closes with an example of Locus search.

2.1: STRUCTURE OF LOCUS KNOWLEDGE

Im.g. understanding Is the application of knowledge to the t ask of Interpreting Images.
As Chapter 1 pointed out , th is process requires the matching of two forms of data: the
sensed data which I. the signal and the knowledge structure which Is the symbol. The

15
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signal is the raw form: points of light pieced together to comprise the Image: For a
computer , the points of light are grouped together into segments or picture elements
(pixels) which are describable with a set of numbers called a feature vector. These
numbers are taken directly from camera sensors and tell such values as the Intensity
of red light, blue light, and green light.

The symbolic form of an image Is the knowledge representati on of the scene. This
form of knowledge is much more compac t than the signal , so It Is easier to store.
Symbolic representations take the form of networks of information: th. nodes of the
networks represent “items” and the inter-connections of the nodes represent “facts”
or qualifications about the items.

Before a machine can match a signal to a symbol, it must be able to compare the two
forms. Some systems use a third representation to do this (Ballard et. al., 1977).
ARGOS does just the opposite: instead of creating a new representation, It combines
the existing ones so that the signal and the symbol are all describable with the same
units. These units are called Primitive Picture Elements.

The Primitive Picture Element, or PPE, is the basic building block of both the signal and
the symbol. Every sensed image can be described with PPEs since each pixel can be
given a unique PPE label. Similarly, the general knowledge of a scene (

~ x above ~~~~under bridse,. etc.) can be described with a network, all of whose nodes are PPEs.
PPEs can be thought of as the smallest units of representation that exist for the micro—
world ot the image task. Alternately, they can be thought of as the largest object that
is both homogeneous to the signal end homogeneous to the symbol. For example , look
at training scene 6 In Appendix I (page A2). The building In the center is the

• S Pennsylvania State Office Building and it has a lobby that looks much different than the
rest of the structure. Proper identification of this building would therefore require
two PPEs called State-office and State-office-l obby because, although they are
symbolically homogeneous (both State Office), they are not homogeneous to the signal
(they look different). Similarly, observe the three cross-shaped buildIngs, one of which
is obscuring the other two, on the right side of in •test scene 2 (page A3). Although all
three look the same, they are assigned different PPEs because they are symbolically
different (from left to right, they are Gateway ]

~~ , Gateway Q~g, and Q~ ewav Three).
To sum it up, the PPE is the label that Locus uses when interpreting images.

The choice of PPEs varies with the micro-world being explored. It is dependent on the
level of detail in the knowledge base and on the ability of the system to ootically
distinguish different parts of an object. If, for example, one wishes to determine
whether an image is a cit y scene or an office scene , then neither the sensed data nor
the symbolic representatio n need be very complex. The PPEs th~ 

bulldlns. 
~~~~ ~jfl,

~~~~ and fl~~~~~ 
would suffice. Note that each of these PPEs is comprised of opticall y

similar pixels in the sensed Image and represent s adequate symbolic Information to
determine the scene type.

If , however, a finer level of scene detail were to be interpreted, then the selection of
PPEs would have to be more com plex. The following PPEs might be selected for the
detailed analysis of a Pittsburgh city scene:
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Hub , ,  swn.i~ Cemmonw.sIth Ph..
Hilton confsr .nc. or.. L~ orty Av.nus hat
Hilton elevator ui~.f I L~.rty Av.nus Wool
Hilton nisin structure • Lb.rty Avenue Island
Hilton windows Blvd. .1 the AJII s
Haton do... M UØI5MS to Hi. North
Afl.~lwny Rivor Mouiitsiiis to the south S

Sky Part,
etc.

For a more complete discussion of PPE selection as it relates to knowledge hierarchies ,
see Chapter 4.

Given that a set of PPEs is to be used to interpret an image, a number of questions
• immediately come to mind. Two obviouS ones are how the sensed data is to be

compared with PPEs arid how the PPEs are to be organized as a symbolic knowledge
base. More Important Is the issue of how these two forms are matched. SectIons 2.2
and 2.3 discuss how PPEs are organized symbolically and optically. Section 2.4
describes the match proceis, which of course is Locus search.

2.2: SYMBOLIC USE OF PPEs

Imagine that a network is constructed whose nodes are all PPEs. The network contains
an initial node and a terminal node between which all other nodes are somehow
connected. Each node is an item in the network and each node connection is a fact
about the two Items It connects. Therefore, a complete network Is a set of facts about
PPEs and is called a knowledge network. In addition, a comple te path from th. initial
node to the terminal node is a collection of knowledge that is consistent (I.e. all facts
agree with each other). The network might look like this:

Imagine further that for every Image which is M by N pixels in size, there exists a path
of MxN nodes stretchi ng from the initial node to the terminal node which forms a

- 
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consistent “statement” about that image’. The existence of a PPE node in a given
position along the path is equivalent to a label assignment of that PPE’s symbolic name
to the pixel in that path position. The path, therefore, forms a symbolic description of
the image, taken from the knowledge network.

Since a PPE path corresponds to a set of labels for an image, the image interpretation
problem reduces to a search task. Knowledge for this search task comes from the
network connections which guide the path selection. For example, assume that there
are 50 PPEs in a network and that each one is connected to all of the others, yielding
2500 node connections. This represents no constraint on the network paths and

- therefore no knowledge. The network would then consist of an Initial node, a terminal
node, and one node for each of the 50 PPEs. If a sensed image which is 75 by 100
pixels in size is matched to this network, then the path through the 50 PPEs can take

S 
any of 50 choices at each step through the image. The number of different paths
through the network would be 50~~”°. If one of the 2500 node connections Is
removed, then the number of possibl. network paths is reduced. Knowledge,

- therefore, appears in the form of constraints on the interrelations of PPEs.

How are these constraints selected? One way is to build up the set of interrelations
from a set of “expected” images. Since each network path corresponds to a legal
image, the converse must also hold: each legal image has a unique network path. It is
this converse form which defines how knowledge is encoded as a set of network
constraints. Each image in the expected micro-world is combined into an overall
knowledge network. If the expected images are all of downtown Pittsburgh, a city
which is surrounded by mountains, then all images of the city are going to have a
backdrop of mountains below the backdrop of sky (except for pathological viewpoints
which can be ignored in this example). This simple piece of knowledge manifests itself
directly as a network constraint: the ~~ PPE may not adjoin any of the buildine PPEs
because the mountain PPE Intervenes.

In addition to specifying legal adjacencies, the network arcs can contain information
• about the kind of ad acencies. An arc can specify that the PPEs which it connects are

~erticalIy or horizontally adjacent. It can also specify more complicated relationships
such as “containership” and some other knowledge such as object size. However, as
the discussion of shape in Chapter 3 will show more fully, most complex relationships
can be built from a series of simpler constraints.

The use of networks to store knowledge is nothing new. Semantic networks have
been used f or years to just such end. In fac t, one might think that these PPE networks
are nothing more than semantic networks. This last, however, is not true. Semantic
networks have multiple levels of hierarchy which define knowledge. A semantIc
network of a city scene might look like this:

I These MxN nodes can be thought of as being linearly connected into a string of
nodes, but In the 2-dimensional world of images, the topology is not that simple. This
Is because the points in an image are not attac hed to each other in a single line.
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Sky *~~4~ountains( (Building i( (Building 2( (Building 
~~~ ( 

Ground River

In the above semantic network, all depth relationships (such as the one between
beckdroD and ~~

) are “within” by default and all nodes at a given breadth level (such
as the one between backdrop and buiidinq) are unrelated unless specified. PPE
networks however, have no hierarchy of “within”. All relationships must be specified
explicitly. A Locus version of the above network would be represented with the seven

• PPEs taken from the lowest level of the semantic network. Notice that the layout of
the PPE constraints ImplIes that the top of the image is on the left “side” of the
network:

I BuIlding 1
aovs~1 abov

/1 ~~~~~~~~ )

Sky ~~~~ Mountains ~4V. Building 2 Ground ~ River
(OscI.*.eurdfl~iyIj r~~~~~IIy~ I’\ ~~~~~~~~~~ ~ wi5.mi~~*~My)

Building 3

The PPE network differs in two ways from th. semantic network. First, all information
about a node Is encoded at the node site, and not at some “higher level” of the
network. This is because there is only one level of the network. It might seem that
this causes each node to use excessive amounts of storage , but in practice, it only
requires a few extra pointers at each node. The second difference between PPE
networks and semantic networks is size. Since semantic networks can shire low-level
descriptions, they can often save spice with common sub-networks. PPE networks
cannot do this because of theIr un-level structure. As a result, PPE networks tend to —

be quit, large. This is one of the reasons that world knowledge Is broken down into .
5

multipl. networks instead of being placed into one knowledge structure (see Chapter
4).

Why are PPE networks structured so is to make them excessively large? The answer
• Is found In the classical tradeoff of space for time. Single-level networks are much

•ui.r to search and PPE networks are no exceptIon. ‘Mist Locus loses in space , It
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gains in time while searching the PPE network. Search of a Locus network proceeds in
the same way as images are laid out. Semantic networks do not have this explicit
search order built into them, so they take longer to search because the control
structure must be smarter.

23: LOW LEVEL MATCHING 
S

Before the search process can be discussed, there is one more background issue that
must be covered: the direct comparison of the sensed data to PPEs. This comparison Is
at the low-level end of vision research and is critical to any high-level system such as
ARGOS. However , since this thesis is concerned only with the high-level end, the
discussion presented here contains no new research. In fact, it does not even pretend
to represent the optimal techniques.

Implicit in the definition of a PPE is the iconic homogeneity factor: every pixel2 that
belongs to a PPE class has similar sensor parameters. For example, the red, green, and
blue sensors could be used to define the ~~ PPE as a feature vector with a high blue
component and low red/green components. Then, every pixel which meets these
specifications could be classified as ~~~~ . These two steps (defining feature-vector
templates and classification of pixels from the templates) comprise the low—level
system of ARGOS.

It is interesting to note that in experiments where this low-level system was replaced
by a “perfect match” the overall labeling error was cut in half. This perfect match
took its knowledge directly from the labels that are used in evaluating results.
Therefore it performed even better than a human would: it knew about quirks and
errors in the evaluation process. However, this experiment still served to show that a
better low-level system would improve ARGOS results.

2.3. 1: Feature Vector Template.

In vision systems today , there is a glut of information available to describe an image.
The images that ARGOS works with come digitized as 525x700 points of lIght. Each
point is described by three 8-bit values from red, green, and blue sensors. UsIng red,
green, and blue, It is possible to obtain hue, Intensity, aria saturation, or, as the color
television industry in America does , obtain Y, I, and Q (Price, 1976). Both of these
derived forms cover the color spectrum. Every point of light, therefore, Is available as
9 dIfferent sensor values.

2 Recall that the 
- 

term “pixel” refers to any area of the image on which ARGOS • 

S

Operates, including arbitrarily shaped segments.
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To simplify labeling, ARGOS does not work with 525x700 images. Not only Is It
prohibitively expensive to search trees with over 300,000 depth levels , but the
interpretation being sought does not require such detail (see the list of PPEs in

• Appendix II for an understanding of the desired level of detail). ARGOS reduces each
Image betore labeling. When the system is working with segmented images, it typically
divides the image Into as many as 100 arbitrarily shaped segments (see App endices VII
and VIII). When the system is labeling a regular grid, each Image Is reduced by a
factor of ~ in each dimension before being processed. This reduction to 75x 100
images makes the search more manageable. It is the largest reduction that can be
performed without damaging a human’s ability to recognize the images at the desired
level of detail. In addition, ~he 7x7 window allows the texture operators (described
below) to distinguish many of the buildings from each other.

The selection of feature vector templates now has two aspects: the choice of sensors
and the choice of reduction operations to perform on the points of tight in each
window. The reduction operators that were explored were: mean, mode, median,
standard deviation, LC.C. (zero crossing count: a micro-edge detector from Price,
1976), and contrast (a function of the 4th moment of the distribution curve from
Tamura et. al. 1977). The list could go on forever but this thesis cannot. With 9
sensors and 6 possible operators on each sensor, the feature vector has a potential
size of 54. Space limitations in ARGOS reduced that number to 6.

There is no adequate justification for the limit of 6 elements in the feature vector. For
t hat mat ter, there is no proof that 6 are needed. The selection of th. feature vector
components was done experimentally by evaluating the labeling quality of each
component on a training image. Although more formal techniques exist (Tou and
Gonzalez , 1974) this method was chosen for simplicity. It was also felt that more
robust selection criteria were not needed in the non-production environment of this
thesis.

Feature vector selection proceeded as follows: a training image was labeled by an
unbiased person, feature-templates were generated for each sensor/reductIon pair,
then each feature-template was tested on its ability to reproduce the initial labeling.
The table below shows the percentage of the image that was labeled correctly for
each reduction operator and each sensor. Note, for example, that the mean value from
the blue sensor was the most accurate because when each PPE was classified solely in
terms of that template, 44% of the label assignments made were correct.

Z.C.C. Mode 
- 

Median Contrast
Red 292 222 30% 222 . 292 92
Green 27?. 22?. 31% 247. 36% 8?.
Blue 227. 442 40% 372 427. 87.
Hue 237. 18?. 27% 42% 112
Intensity 267. 23% 317. 26% 362 8%
Saturation 247. 237. 24% 21% 192 7%
V 317. 217. 302 227. 35% 8%
1 30% 207. 26% 17?. 28?. 112
Q 22?. 307. 372 312 292 72
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From the above table, plus additional information about how well each sensor did for
various parts of the scene , six feature vector elements were chosen. It was decided
first that since Hue/Intensity/Saturation and Y/I/Q are simple re-combinations of
Red/Green/Blue, the former could safely be rejected in favor of the latter. This is also
supported by the fac t that humans perceive color as Red/Green/Blue so ARGOS should
do the same if it wants to best mimic human perception. The next choice is among the
operators. Median, a good low-texture operator, performs best according to the above
table. Since city scenes have many high-texture objects, some other operator is also
needed.

It is interisting to note that the statistics in the above table are of no help in selecting
a high-texture operator since the test scene had much low-texture area, thus causing
high—texture operators to score badly. In particular, It was noticed that contrast was
best at labeling the high-texture areas, even though the above table indicates that it Is
the worst operator. Therefore, the final feature vector selection contains these
sensors and operators:

Median of Red Contrast of Red
Median of Green Contrast of Green
Median of Blue Contrast of Blue

One additional consideration must be given to the feature vector templates: they
should be able to accurately describe objects that have multiple appearances in the
training images. For example, assume that two images show a building alternately in
the shade and In direct sunlight. A single feature vector for these two views would
attempt to combine both appearances and, in so doing, destroy the ability of the 5
feature vector to label either view. Although more sophisticated image operators
could be used to distinguish shadows, the point here is that objects may vary in

J appearance and this variance must be handled properly.

ARGOS solves this problem by creating multiple feature vector templates for objects
with multiple appearances. The decision to create an additional template is made
automatically when the standard deviation of more than two feature vector elements
exceeds 20% of their possible range. If, for example, the Median of Blue range is 100,
and the standard deviation of five instances of a building is over 20 in the Median of
Blue position, then that element of the feature vector is too diverse. If more thin two
elements are too diverse, the feature vector is split in the middle of the dynamic range
of the most diverse element. When training on seven images, ARGOS generates as
many as three feature vector templates for each object , although one template
typically suffices.

-
. 2.3.2: D~etance Metrics -

Now that six elements have been selected for the feature vector, a distance metric
must be found for the pixel-to-PPE lik.lihood calculation. A distance metric Is simply a
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way of determining the likelihood that a given pixel in the sensed image belongs to a
PPE class. The metrIc provides what can be called an “optical match” between signal

- and symbol: it tells how close they are to looking the same. The simplest distance
- metric is subtraction where the optical match is based on the difference between the

PPE’s feature vector template and the pixel’s feature vector. For example, if the ~~~PPE has the template values: (red mediansO, green median—0, blue medlan—lO, red
contrast—0, green contrast—0, blue contrastu’O) for the feature vector selected in the
previous section (which indicates strong, solid blue) and a sensed pixel has the feature
vector (1, 2, 7, 4, 2, 0) then the subtraction distance metric yields the vector (1, 2, 3,
4, 2, 0). An optical match can be computed using a percentage of the worst-case
distance vector (which would be (10, 10, 10, 10, 10, 10) in this case).

ARGOS uses a slightly more complex metric that is commonly found in vision systems:
weighted-Euclidean distance. Euclidean distance is, of course, the square root of the
sum of the squares of the distances. In the above example, the Euclidean distance
would be (12 + 22 + 32 + 42 + 22 + 0215 5.8. ARGOS goes one step further: each
component of the leature vect or template is weighted so that unimportant compo nents
will not drag the optical match value down. The weights are a six-tuple which might,
for the th. example, be (.18, .18, .1, .18, .18, .18), indicating that the low-contrast
(median) blue sensor is less constrained, but all others contribute equally to the
likelihood calculations. In this case, the weighting allows the ~~ PPE to be deep blue
or light blue, but rio red, green, or h~ h-texture. The weighted-Euclidean distance
metric then becomes ((12X.18) + (2’X.18) + (32X.1) + (42X 18) + (22X.18) +
(02X.18)15 2.2.

The selection of weighting factors is another badly justified algorithm in ARGOS. The
problem is that at the root of all selection is a human who must train the machine on
each PPE. The training is done by interactively outlining examples of each PPE region.
From these regions, the machine is told to select feature vectors for the PPEs. It

5 begins its selection by computing the mean and standard deviation for all pixels in the
region. Then, those pixels that are more than 1.5 standard deviations from the mean
are rejected. This rejection of atypical pixels allows for human error in the labeli ng
and prunes data points which may be unfairly contributi’ig to the metric. The mean
and standard deviation are then re-calculated and the adjusted standard deviation is
used as a weighting factor for the adjusted mean (which becomes the template value).
The use of standard deviation as a weighting factor on the mean is common practice
because it is an indicator of the consistency of the data and therefore the usefulness
of the mean value in classifying that data. The conversion of standard deviation to
weighting factors is done by inverting the six standard deviation values for a given
region and then linearly scali ng them so that they sum to 1. Since feature vector

- components with high standard deviations indicate erratic quality on the part of that
component, a high standard deviation will yield a low weight which will reduce the
system ’s dependence on that component.
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2.4: LOCUS SEARCH

There is only ose stop remaining in this labeling process: search. The knowledge
environme nt has been formulated as a network arid techniques have been devised for
matching the sensed image to that network. The search process must r~o~ find the
“correc t ” set of labels f or the sensed image.

As the discussion of PPEs mentioned, the cornbinatorics of labeling an image are
tremendous. ARGOS deals with images that are 75 by 100 pixels and contain a
minimum of 50 PPEs. If no knowledge about region relationships is available, then the
branching factor f or a 50 PPE network is 50 (i.e. PPEs can branch 50 ways to all other
PPEs) and the number of possible tabetings IS 507500, or about iO12750. when
knowledge is applied, the branching factor reduces significantly. For example, a typical
50 PPE network with knowledge has a branching factor of about four which reduces
the number of possible labelings to 47500, or about 104500. Thus, the application of
knowledge Is the most powerful tool available in reducing the search space. No other
technique can reduce the number of labelings by over 8000 orders of magnitudet
However , there is still much reduction to be done before a single, optimal path is
selected, because even 104500 paths are too many for a computer to examine. Locus
search is able to perform that reduction and extract a single labeling from the
knowledge-reduced search space.

2.4.1: Intro&ction to Locus search

Finding the optimal path through a graph is a classical search problem with many
alternative search strategies (Nilssori, 1971). What d!stinguishes ARGOS from other
systems is its use of Locus search. Locus is a beam search heuristic In which all
except a beam of near-miss alternatives around the best path are pruned from the
search tree at each decision point. This reduces the exponential number of paths to
explore without requiring backtracking or any iterative search.

The remainder of this section describes the basic issues of search which are necessary
to the understanding of Locus. More advanced readers will want to ski p ahead In
order to avoid sleep.

Search involves the creation of a search tree from the signal and the symbol. This
creation is a simple expansion of the possible paths through a knowledge network.
Just as each knowledge network path has a node for every image pixel, so every level
of depth through a search tree corresponds to a different image pixel. Thus, a
knowledge network node which is visited ten times In the labeling of an image wilt
appear on ten levels of the search tree.

To fully understand Locus search , a description of some simpler search strategies is
needed. Pecall the 75x 100 pixel image that is matched to a knowledge network with a
branching factor of four. The search tree contains 47500 paths which are laid out like
this:
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A single path must be selected which labels the image. A simple breadth ordered
evaluation starts by examining the four possible PPEs at pixel 1 and selecting the best. 5

The search tree then looks like this:

Pixel 14, Pixel 24, Pixel 34, Pixel 75004,

/

/

7499

• 

4 nodes

Next, the four choices at pixel 2 are evaluated and the search is reduced further:

Pixel Pixel 

~4, Pixel 3 Pixel 7500
4,

/
—
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After 7500 choices of four pixel labels, the entire Image Is labeled. Ths evaluation
technique is fast and extremely inaccurate.

Inaccuracies in the above search scheme arise from the order in which PPE
possibilities are pruned. When the four PPEs at the first pixel are reduced to one, 75Z
of the search tree is pruned. At this early point in the tree, it is definitely unwise to
prune that many paths. A good path could be pruned simply because it “gets of ? to a
bad start” (i.e: is not well matched to its fIrst pixel). In addition, once a path is chosen,

- the search is “stuck’ with whatever is below that node In the tree. If, for example, the
four choices at pixel 200 are all bad, the search is still forced to choose one and
proceed.

The typical solution is to add backtracking. Backtracking is a method of rejectIng alt
choices at a pixel and backing up to the previous pixel Mr a re-selection of the
correct path. This backing up can step as far up the tree as it likes. The problems
with backtracking are numerous. First, how is it decided that all choices are bad? The
machine doesn’t know what’s on the other paths so it can’t be sure. It has already
been established that the machine can’t look at every point in the search tree, so some
absolute measure must be available of the goodness of a pith. Another problem with
backtracking is time: the search might be near the end of the tree and find out that it
has to back-up to the beginning to re-do a faulty decision. This could happen easily in
test scene 3 (see Appendix I, page A3): while labeling from the top to the bottom, the
machine might incorrectly identify the smoke-stack as a building. The mistake would
not be discovered until the building at the base of the smoke-stack was scanned. The

5 machine would have to backtrack to the top of the smoke-stack and re-do all of its
work. Backtracking can thrash around f or quite a long time and cause many pixels to
be evaluated repeatedly.

Other techniques add more bells and whistles to the search. State information can be
saved to make the backtracking less painful; multiple paths can be explored (to a

• limited extent); different search-orders can be used; and various evaluation functions
can be applied. For the image understanding task, where search tress are enormous, a
much better technique must be used.

2.4.2: Overview of Locus

Locus search is different from standard breadth-first search. It rejects the notion that
any final path decisions must be made before the entire image has been scanned.
Recall that Locus is a beam search: It steps through the knowledge network and the

1 
- 

image selecting many “attractive’ paths it each pixel. These attractive paths comprise
the beam: a pruned search tree which contains a list of near-miss alternatives around
the best path. Beam selection is based on a combination of low-Iev.l (signal) factors
and high-4evel (symbol) factors in a recursively defined environment that links these
factors In all parts of the image. There is enough latitude in the beam to allow many
optImal .Iabelings to be stored. It is only after the entire Image has been examined
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that a single path Is selected from the beam. The final labeling Is therefore ‘th. best
of the best”. It Is found without time-consuming backtracking and it Is highly accurate
because it delays decision making until the entire beam has been examined.

Observe the search tree of the previous section as Locus searches it. The tree has a
depth of 7500 and a branching factor of four. Locus prunes a varying number of
branches at each depth level. The amount of pruning is determined both by beam
eligibility and beam capacIty. Let us assume that two paths are rejected at pixel 1.
The remaining two are placed in the beam:

Pixel 4, Pixel 2 Phiei 3 Pixel 75004,

• 

2 x 4 ~~
’nodu

There are now 8 possibilIties at pixel 2. FIve are selected for the beem

Pixel Pixel 24, Pixel 3 PIxel 75004,

5 x 4
741

nodes

Note that It is relatively easy to include many paths in the beam at this early point in
the tree. However, as the tree expends, It will be necessary to make severe
reductions In the percentage of paths that are saved. When th. entire Image has been
scanned end the beam has been selected, the tree might look Ilk, this:
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Pixel I Pixel 2 Pixel 3 7498 Pixel 7499 Pixel 7500

0 _ _ _ _ _ _ _ _ _ _

0

V 0

0

This completes what is known as the forward pass of the search. No unique path
selections have been made, yet the entire beam has been built. All that is left is to
assemble a final labeling. This step, known as the backt racs, is simply a backwards
scan of the paths that were placed in the beam by the forward pass. The bac ktrace
bears no relation to backtracking: its function is to proceed directly through the beam
In- reverse order without recursion, iteration, search, or any other extended
computation. The backtrace is not unlike the painter who, after meticulously laboring
on a painting, steps back to observe her work. The forward pass Is the painter’s
effort; the backtrace is her final evaluation.

2.4.3: The Forward Pass

The forward pass of Locus search proceeds in breadth order through the knowledge
network creating a beam-like search tree as it goes. Each level of depth in the tree
corresponds to a pixel in the sensed image and each knowledge network PPE at a
depth level is a possible label assignment for that pixel. The following sub-sections
discuss the various aspects of the forward pass.

2.4.3.1: Order of S.arch

Th, order in which the image pixels are scanned Is raster (left-to-right, top-to-
bottom). For the 75x 100 pixel images, this means that depth level 1 of the search tree
corresponds to the pixel in the upper-left-hand corner, depth level 100 Is the upper-

• right-hand corner, depth level 7401 Is the lower left-hand corner, etc. For pre-
- segmented images~ the segments are ordered by raster according to the position of the

segment centroid’. This order of search may appear at first to be detrimental to the
quality of labeling. It will be shown, however, that when using Locus, th. order of
search is of minor Importance as long as the backtrace follows the reverse order of
the forward pass.

3 Some re-ordering may be required to ensure that each segment adjoIns previous
- segments in the search tree.

28

-- — —— —-- 5--- ~~~~~~~~~~ 
-.5.--— —--i- - —-.5-



_ _ _

Recall that each knowledge network has an initial PPE and a terminal PPE. For the
two-dimensional image task, there are actually four knowledge network PPEs which
cover the initial position. These PPEs are the four image edges: 

~~~~~ 
bottom. 

~~!I, .jnd
~~~~ Locus knowledge networks can use these PPEs to help constrain region -

placement within the image (for example1 ~~ is at the j~~ of the image). Note, -

however, that these constraining PPEs can be used to not constrain simply because
Locus imposes no fixed rules on region placement within the scene: it leaves that as an
option. -

2.4.3.2* Path LIkelihoods

During the forward pass, determination of likely PPEs is based on the computation of a
path likelihood for the search tree path that arrives at that PPE. The path likelihood Is
defined recursively in terms of the path likelihoods of all parent PPEs in the search
tree4. It is this path likelihood value which is used to build the search tree and guide
the forward pass. It uses three pieces of information: the optical match of the pixel to
the PPE; the path likelihoods of previous PPEs; and the transition lik lihoods of arrIving
from those previous PPEs. Formally:

— x AVERAGE (MAX 
~ k,j+~(d) x Tk,i,d)]

d k

where 
~ij 

is the path likelihood of PPE I for depth level j (position j of the signa l~ O
~jis the oplical match of PPE i to the pixel at position j è(d) is the depth adjacency

function which offsets the current search tree depth (J to a ‘previous’ adjacent depth
(j4(d)) in the two-dimensional directiOn d and Tk,I d is the transition likelihood of
traveling from PPE Ii to PPE i in direction d (explaini~d further in sub-section 2.4.3.4).
The following diagram illustrates the physical placement of these values in an
unsegmented image: 

. 
-

- 

[~~~~~2~~~~~ 1~
a(3
~

T~~ 2 [
~~~

O
i. 

~ 

J~::~::~_.._i
-F;•::-;:::;——1___

~._.~_~ll• ~a 
~~ o~• Current Pixel

4 Th. recursive nature of the path likelIhood equation explains why Locus needs edge
(or initial) PPEs in every knowledge network.
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The need for the a function Is explained by the fact that the task is Image
interpretation which is two-dImensional. Since depth within the search tree is one-
dimensional, some concept of pixel adjacency must be Incorporated. This Is done with
the è function which determines, for a given two—dimensional direction, what two depth
levels are physically adjacent in the image. For example, in a 75x100 image,
a(above)—-loo and a(left )—-1. This is because of the raster order of scan: a pixel to
the left Is I back In the search tree whereas a pixel to the top is 100 back on the
previous raster line. Pre-segmented images have an arbitrary number of adjacencies 5
so the a function can extend as far back as the start of the image.

5 

In unsegrnented images, ARGOS ‘ises four primary directions of adjacency: left, above,
upper-left, and upper-right. These four directions, which are the range of d, have four
opposite directions which together allow all horizontal, vertical, and diagonal
relationships to be defined within the 3x3 matrix of pixels surrounding th. current
point. Note that the opposite directions are not explicitly used because, for example,
the relationship ‘A below B’ can easily be expressed as ‘8 above A’.

In pre -segmerited images, adjacency is much different. The directions of adjacency
cannot be limited to an upper-left semi-circle since the previous segment can border
on all sides of the current segment. Thus, at least eight directions of adjacency are
required to retain the same amount of knowledge. However, the pre-segmentation
version of ARGOS does not use diagonal directions of adjacency. This is because
segments which are diagonally adjacent can also be considered to adjoin horizontally
and/or vertically. The result is that pre-segmentatr~rn ARGOS has the following four
directions of adjacency: left, above, ri ght, and below. These directions are used to -

match the segment adjacency to the network adjacency when determining the
transition likelihood. Unlike unsegmenled ARGOS, these directions of adjacency can be
combined when describing segment adjacency. Thus two segments can adjoin in any of
16 directions (left, right, above, below, above and left, above and right, etc ) Even
complex relationships like ‘containment’ (Levine, 1977) can be incorporated in this
scheme.

A more sophisticated adjacency system for pre-segmented images would be able to
account for the continuum of border classes. It might be reasonable to work the
border type into the path likelihood equation. For example, if the Gulf 

~~
g comes to a

point at a 60° angle, then the transition likelihood to a ~~j  ~~g PPE would be
penalized more as the angle of the segment border strays from _600 or +600 (the two
angles that define the pinnacle of the building). In addition to considering the angle of
a border, Its tex ture (smooth or jagged) could be considered.

2.4.3.3: R.combination -

The path likelihood equation introduces an interesting heuristIc used In Locus search:
recombination of PPE nodes in the search tree. If search trees were actually
represented as totally independent paths (which section 2.4.2 leads one to believe)
then any PPE-pixel node would uniquely identify Its lineage back to the root of the
tree. In the image understanding world, where search trees are phenomenally large,

5 
these Independent pat hs are too expensive to retain. Therefore all paths at a given
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depth level which transit to the same PPE in the knowledge network are merged by
Locus into one PPE node in the search tree. For example, if both ~~~ and mountain
PPEs can transit to the 

~
jy

~t PPE, then the left—hand figure below shows the true
search tree for this transition and the right-hand figure shows the Locus search tree
which combines the 

~~~~ 
PPEs.

Pixel n~j~ Pixel n+l~j , Pixel n Pixel n+1

Sky 0— ——0 River Sky
River

Mountaino- -o River Mountain

True Search Tree Locus Search Tree

It is for this reason that the maximum factor exists in the path likelihood equation:
the best previous PPE is saved, along with its path likelihood; all others are rejected.
In a true search tree, the ‘maximum’ factor is unnecessary because there Is only one

- parent PPE for each child. Locus’s rejection of less likely paths means that, in
actuality, one of the transitions in the above Locus search tree will be ignored after
both have been calculated. The rejection of a path Is equivalent to the rejection of
the entire path leading up to this point from the beginning of the search tree.
However, the rejection is not damaging since there is now a better path to this point.

There is one more detail that should be mentioned about the path likelihood equation:
the ‘average’ clause. This clause indicates that path likelihoods from all directions of

.5 adjacency are being considered. The likelihoods are averaged to show that they
contribute equally to the overall path likelihood. As a side constraint, the unsegmented
version of ARGOS insists that a parent exist in all four directions. For example , if
three out of four pixel neighbors have beam entries that can legally transit to therj~gz. PPE, but there are no entries in the fourth pixel neighbor that allow this, then
the ~~~~ PPE will not be placed in the beam at this pixel The pre-segrnentation
version of ARGOS relaxes this constraint and simply penalizes any PPE that does not

5 have transitions from all neighbors. This allowance is due to the potentially large
number of neighbors that a segment can have.

2.4.3.4: Transition Likelihoods -

More reduction in the complexity of the path likelihood equation can be obtained by
selecting the transition likelihoods from one of two values: 0 or 1. A value of 0
indicates that It Is not feasible to transit from PPE k to PPE I In direction d. A value of

.5 1 means that the transition is allowed (i.e. PPE I’. end PPE I may adjoin each other in
the d direction). The transition likelihoods are therefore the knowledge network
constraints and comprise the major knowl edge element of the path lIkelihood equation.

ARGOS actually implements the transition likelihoods as one of three values: 0 for a
disallowed transition; 0.1 for an allowable transition from one PPE to another; and 0.9
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for an allowable transition from a PPE to itself. Self-trans lt ioning is a necessary
special case in the unsegmented system since most PPEs cover a large area of pixels.
The increased likelihood of transitioning to the same PPE Is a form of knowledge which
ARGOS uses to label city scenes. The value of 0.9 Ii taken, without experimental

.5 verificatIon, from the Harpy speech Implementation of Locus. Pre-segmentation ARGOS
also uses differing Intra—state and inter-state transition lIkelihoods, but the reverse
values are used. This is a knowledge source which implies that the segments form

S 
complete objects in the image and should not self-transit.

2.4.3.5: The Beam

The beam is the search tree. It is the collection of pixel—to—PPE pairings that is
accumulated on the forward pass. It recursively generates itself using the path
likelihood equation to select new members. However, not all of the path likelihoods
produced by the equation are saved in the beam. This is because Locus resembles a
first-order Markov system, so the only likelihood values that are needed are for th. è

5 calculations in the immediate neighborhood of the pixel being computed. In the
unsegmented system, anything more than 1 scan-line back (100 depth levels back) can
be discarded because path likelihoods exist only to compute other path likelihoods.
The pre-seg mentation system , however , mus t keep all of the likelihoods since strange
segment adjacencies may require arbitrary values from the beam.

The important information in the beam is the PPE connectIons. Whenever a path
likelihood is computed, there is an ‘optimal parent’ in each direction of adjacency.
This optimal parent is considered to be a major contributor to th. path likelihood at
the current pixel or depth level. It can be seen in the path likelihood equation as the
maximum ii for each direction d. The collection of optimal parents is what makes up
the beam.

2.4.3.6: Pruning

Yet another distinguishing feature of Locus is its pruning. It has been mentioned that
Locus selects the best few PPE connections and saves them in the beam. There is a
fixed maximum size at each level of the beam which is considerably smaller than the
number of PPEs. Therefore, only those PPEs with the highest likelihoods are allowed
in the beam. Those that cannot fit are usual ly not important In the overall labeling
scheme because there are many other beam entries with higher likelihoods.

In addition to fixing the beam size, Locus maintains a threshold below which a
likelihood will be pruned regardless of beam space availabilIty. This threShold, which
Is used In Harpy Locus, is dynamic In that It Is relat ive to the best likelihood at the
particular depth level. If th. best PPE has lIkelihood value P, then all other PPEs with
likelIhoods below P-threshold will be pruned. It has been found that a threshold of
100 (out of a possible range of 256, see next subsection) wll~ prune on the order of
~~~ of the PPEs at each depth level. This I. a hefty cut yet it does not damage the
labeling quality.
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2.4.37: Normalizat ion

One problem that arises when coniputln~ the path likelihoods is precision. In a true
Markov system, all of the probabilities~ at a given depth level must sum to 1. In
Locus, however, there is much pruning and re-combination of likelihoods. Th. result is

- 
that the values degenerate as the network Is scanned. To prevent this, the likelihood
values at a pixel are normalized once they have all been computed. The most S

promising PPE at the level is given the lIkelihood value 1 and all others are linearly
scaled to f all below that. This normalization causes no damage to the algo rithm

.5 because Locus is only concerned with one single depth level as it relates to another.
If all PPEs at a level are normalized together, then the relative results are the same.

As an added bonus, the normalization allows the path likelihoods to be stored with
very few bits of precision. ARGOS uses negative log values of all likelihoods so that it
can add instead of multiplying. Also, it is able to store these as integral values in only
8 bits of precision. Thus, the likelihood value 1.0 is stored as a 0 arid the likelihood
value 0.0 Is stored as 255. All fractions between 0.0 and 1.0 are represented as an
integer between 0 and 255.

2.4.4: The Backtrace

After the entire image has been scanned, all that remains is the beam: stretching out
for as many depth levels as there are pixels in the image, and containing PPE
connections from the forward pass. The backtrace scans the beam in reverse order 5

• (i.e. from the bottom of the search tree to the fop) and produces a labeling of the
image. The labeling, of course, consists of a series of PPE assignments to every pixel
in the image.

The inquisitive reader will ask why the beam is scanned in reverse order. The answer
Is: to obtain a unique labeling. NotIce that the beam contains, for each PPE entry, a
pointer to its optimal parent PPE. This optimal parent pointer is a direct by-product of
the path likelihood equation. Therefore, when scanning the beam backwards, each
child PPE which is selected will identify exactly one parent PPE at the next higher
level. If the beam were scanned forwards , there would be ambiguity when a parent
had more than one child: which child should be selected next? Observe the following
beam:

5 I use th, term ‘probability’ only when discussIng true stat istical system .. Locus is
pseudo-statistical , so I remove any theoretical implications that may be assoc iated
with the numbers by calling them likelihoods’.
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There are six depth levels, plus the terminal PPE6. Notice that the beam has exactly
one path defined by following the optimal parent pointers (arrows) from the terminal
PPE. The same cannot be said for the other order. The backtrace is necessary in this

S form of search tree evaluation because of the re-combination that occurs when two
PPEs at a depth level join into a third at the next depth level. If there were no re—
combination, then the optimal PPE at the bottom depth level would uniquely define a
path back t hrough the search tree without the need for a beam or any parent -

pointers. However, the combinatorics of search without re-combination are prohibitIve
in the image understanding task, so Locus re-combines and does a backt race.

Notice that the backtrace Is extremely fast. It performs no search or other involved
computation. In fact, the backtracs is linearly bounded in time to the size of the image.
Even with the complications that are about to be discussed, it re tains thes• qualities.

2.4.4.1: ConflIcts: The Problem S

ConflIcts arise in the backtrace when multiple beam pointers from the forward pass
disagree. This is a subtle problem that is once again caused by topology: the task is
two-dimensional but the beam is one-dimensional. The solution to the dimensionality
problem is simple but it Introduces problems in the backtrace.

To handle two-dimensional data on the forward pass, there is an optimal parent in each
of the directions of adjacincy. This was mentioned in section 2.4.3.2 when the path
likelihood equation was presented. If the forward pass saves d parents for every child
then, by symmetry, there must be d child PPEs for every parent on the backtrace. It
looks like t his in the unsegm.nted system where d—1:-

5 

6 Th, terminal PPE is defined to be that PPE to which iii those at the last depth level
must transit. Therefore, all of the paths In the beam end up at this single point. The
terminal PPE exists only as a formalism In Locus: without it, th. bottom-level PPEs
would have to be evaluated to see which is the best one for starting the backtrace.
By using the concept of a terminal PPE, the best bottom-level PPE ‘f•t Is out’ as an
optimal parent.
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In the above diagram, the backtrace is about to label pixel P and th, four child PPEs
have already been scanned (remember: the backtrace proceeds in reverse raster
order, from right-to-left, bottom-to-top). Each child pixel has been assigned a PPE
label, therefore each child pixel has something to say about its parents in four
directions (observe the tangle of arrows). Notice that although there is only one
optimal parent for every child, there are four directions of adjacency, so there is an
optimal parent in each direction. Parent pointers connect two levels of the search tree
and every PPE has parents at four other levels , therefore four parent pointers. If, for
each child pixel, c (1 ~ c ~ 4), there are four parents 0P

~
(d] (d t aken from direction key

above), then the four PPE label choices for pixel P are OP1 (UL], 0P2(T], OP3CURJ, and
0P4[L].

Clearly, two-di mensiona lity presents a problem of conflicts: when th. children select
different parent labels. Although it would be nice to have unanimous PPE selection,

.5 this is not always the case. Conflict resolution is an interesti ng problem that Pies not
been fully explored. Therefore, the following discussion contains some techniques and
observations, but no definitive solution.

2.4.4.2: Conflict.: Some Answers

There are two ways to resolve conflicts. The obvious one is to select one of the
candidates from th. child PPEs through some heuristic. The surreptitious solution Is to 5
throw out a pixel when It has a conflict. This latter technique is not as bad as it
sounds for a few reasons. F rst, there is no rule which says that every pixel must be
labeled. Humans don’t assign interpretations to every point in an image, so why must
ARGOS? In effect, the system can say, “this point Is confusing: It could be any of these
objects, I can’t tell. I’ll leave it undecided.’ The second reason for leaving conflict
points unlabeled Is in direct support of the fIrst: experience has shown that conflicts
arise only at region borders or in areas whe re there is inadequate training. When
ARGOS changes PPEs, it gels conlused for a pixel or two but soon picks up th. scent 5
and continues faithfully. 

S

Given that conflicts can be resolved by arb itratIon or rejection , ARGOS chooses to do

35

-5-- —5--j- 
SS ~s5S _5_ SSS_ _55.5 _ 

- 
~~~~~~~~~~~~~~~ - •_••_ — — ~.__



.S..-. --—---- -~~~~~~~~ .55 
~~ S -

~~~~
-5S

~~~~~~~
- - - - -

~~

both. It employs a few simple heuristics to resolve conflict t ypes that it understands,
and then rejects the pixel If the conflict persists. Leavi ng a pixel unlabeled sounds
simple enoug h, but it causes other problems In the backtrace. One problem is that
there are no parent pointers emanating from an unlabeled pixel.

In the unsegmented ARGOS, when an unlabeled pixel is skipped, all parent pointers are
extended around it. Although no pointers emanate from unlabeled pixels , this allows
every subsequent pixel to get. four pointers into It by having a labeled pixel at some

• distance in all four directions. The diagram below il lustrates the arrangen ent of child
pixels used when an unlabeled entry is left. Notice that the second child is passi ng
through the unlabeled pixel.

Current
lacktrace Child 4Node ~ — -

~~~~~~~~/
Child 3 Unla dec Child 1

Child 2

• In pre-segmentation ARGOS, unlabeled segments do not affec t the backtrace: they are
simply ignored. Since the number of child segments varies anywa y , it does not matter
if there are one or two less children available when it comes time to label a segment.
It should not be presumed, however, that unlabeled segments are harmless. Conflicts
indicate inconsistency in the interpretation and should be resolved whenever
intelligently possible. 

.

The most powerful, and least obvious conflict resolution technique is simple knowledge
constraint checking. In. child pixels have been labeled already so their parent PPE
selections should be consistent with all legal adjacency rules In the relational
knowledge network. It is simple enough to check each candidat e for the parent
position against its children and reject those candidates that are inconsistent. If .11 but
one candidate are rejected , then the conflict has been resolved. If there are still
multiple candidates , or, if all of the candidates are rejecte d, then some other resolutIon
technique must be employed.

Before moving on to other resolution strategies, it Is worthwhile to stop and see why
the above technique is able to funct ion. Alter all, aren ’t all beam entries generated
from the path likelihood equation? And doesn’t that equat ion use only legal PPE
relationships? So how can invalid relationship s arise? The answer has to do with the
reverse order of scanning and the topology. ~ may adjoin ~~, and ~ may adjoin g, but ~doesn’t have to adjoin ~. Even though they may end up touching in two-dimensions,
they do not have to be legally adjacent. Don’t forget that the beam contains many
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likely label candidates which may riot all be consistent with each other. For a good
demonstration of how this type of confli ct can arise, see the example In sectIon 2.5.

The next technique used in conflict resolution is voting. It has been found that If one
candidate outnumbers all the others, then that candidate should be chosen for the pixel
label. Voting is easily implemented and aids in labeling quality.

The only other resolution technique that was explored is directional preference. This
last-resort heuristic Is used only when the above two techniques fail. What at does is
to select candidates solely on the basis of their adjacency direction. The assumption is
that certain directions aid the labeling more strongly than others. When this
assumption was tested out in the uns.gmented system , it was found that the diagonal
directions seem to be slIghtly stronger than the horizontal and vertical directions.
However, the advantage is not strong enough to be significant. In addition, use of this
technique implies that all conflicts can be resolved since this techniqu, cannot fail.
Inaccuracies in labeling rise faster than accuracies when conflict points are forced to
be labeled. Therefore, directional preference is not used.

There are a number of conflict resol ution techniques that wer • not explored. An
example of one of these Is the use of opti cal matches. This factor can be used In
conjunction with other techniques (i.e. as a weighting factor for voting) or by itself. In
fact, any knowledge that is used in the forward pass can also be applIed In the
backtrace to help resolve conflicts.

2.4.5: Advantages of Locus Search .5

Locus performs very well in labelIng images. The technique of delaying decision until
the backtr ece pass allo ws a globally near-optimal labeling to be selected. ‘Gioba lly .5

S near-optimal ’ means that every knowledge constraint which has not been pruned is
able to be applied to every PPE relation in the scene. For example , the discovery of a
~2gj in the lower-left corner can affec t the selection of a boat house In the upper-
right corner or anywhere else. Of course, pruning does allow for the possibility of
missing the globally Optimal path. However, this happens too seldom to make the
added cost of exploring all nodes worthwhile.

The reason that Locus search yields globally near-optimal results is simple: it
resembles a Markov system, and Markov systems yield globally optimal results. In fac t,
if no pruning, normalization, or node recombination were done, then Locus would be a
Markov system. It has been found, through extensive experience with Locus systems,
that these heuristics do little damage to the Markov nature of the search. Thus the
quality is preserved.

Yet another advantage of Locus search is reduced order dependence. It was
mentioned earlier that the raster order of search i. not detrimental to labeling quality.
In a M rkev system , all tha t matters Is that every point be examined: they are all
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related to each other regardless of order. In Locus, all that matters Is that every point
be examined arid that the backtrac e reverse the order of the forward pass. Given that
Locus implements a Markov system (which, within heuristic bounds, it does) then it
becomes marginally important how the image is scanned. In ARGOS, the raster
scanning order is done for two reasons: to provide a consistently high number of
neighbors in the context of the search (i.e. every pixel in the forward pass or
backtrace is guaranteed to have neighbors that have already been examined) and to
demonstrate that the order of search is not significant.

It would be feasible to add search order as a knowledge source. This would require
the addition of a depth level factor in the path likelihood equation (perhaps somewhere
in the normalization, phase). Then the search could start from one or many ‘points of
interest’ in the sensed image and proceed outward (perhaps in a spiral). These points
of interest could be selected on the the b.sis of their signal feat ures (i.e. bright areas)
or on the basis of some know ledg. about the image (perhaps from a higher knowledge
hierarchy level).

Another advantage of Locus search is speed. Locus uses no backtracking or other
unbounded computation. The beam constrains all search possibilities to a reasonable
size as it follows many parallel paths through the search tree. In fact, the varying
sized beam can be functionally compared with the varyi ng sized stack in standard
backtracking searches: both list the current best paths through the search tree. The

S difference is that the beam is horizontal and the stack is vertical (when search trees
are viewed as top-to-bottom, not left-to-right). It is this directionality which allows
Locus to limit the beam size without damaging the search.

2.5: AN EXAMPLE -

A good way to finish up this chapter is with an example. This example is, of necessity,
a toy use of Locus but it will make use of much that has been presented in this
chapter to show how it all fits together. Those readers who are satisfied with the
details of Locus may skip to the next chapter.

2.5.1: Background

This example concerns the labeling of a very small satellite picture of a fictitious
agrarian nation. The nation ’s chief products are Alfalfa, Barley, and Corn (sometimes
retered to in this example as A, B, and C). Due to soil conditions, wInds, and antiq uated
l aws, farmers always plant their crops in fixed positions on their land. The law states
that Barley and Corn must be planted, but Alfalfa is optional. The soil conditions
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mandate that Corn always be planted to the east of Barley, and winds force farmers
who choose to plant AIf alt a to do so in the north-west corner of their field.

A Locus knowledge network is compiled from the above information. It uses only north
and west in its relationships and looks like this:

Top 1

Left r1 

1

AIfLf “.1
~~ ]H 

Co H Ri~ht~ j  
IN

F Bottom

Needless to say, there are three PPEs: alfalfa, barley, and ~~~ Together with the
four image-edge PPEs, they define the knowledge network. The goal is to label the
satellite photographs and identify the crop types.

The satellite photographs are not very large: four pixels across and two pixels high
(unsegmented). However, with a total of 8 pixels and 3 choices of a label for each
pixel, there are still over 6000 possible labelings of each satellite photograph. It was
mentioned earlier that knowledge does most of the reduction of the search space and
this example is no exception. In fact , the knowledge-reduced search space actually
contains only the following ten possible labelings:

A A B C  A A B C I  [A ] A B C  A B B C ]  A B B C J
A A B C  A B BC]  f f f J BBC A B B C 1  B 8 B ,t~]

B B B C  A B C C 1  A B C C  8 8 C C ]  B C C C
B B B C  A B C C ]  8 C C  8 8 C C ]  B C C C  S

2.5.2: Low Levet .5

t The low-level side of this example is as follows: there is one sensor in the satellite
which generates brightness values in the range of 1 to 10. Therefore, the feature
vector templates are simply one number which describes each PPE. Let us assume that
the typical alfalfa field registers 4 on this sensor , barley registers 9, and corn
registers 3.

For a distance metric, It is adequate to choose an unweighted subtraction measure. In
particular , the formula O

~j 
• 1 — ~—iII IO will yield a fract ion between 0 and 1 which

indicates the likelihood t~iat PPE I is matched to image pixel j . in our example, the
• sample photograph to be labeled looks like this:
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SO therefore the optical matches for each PPE at each pixel are:

Alfalfa Barley - Corn
5 

0.9 0.6 0.6 i.oJ L~JO.9 0.9 0.5 1.0 0.5 0.5

0.6 0.8 0.9 o.aJ 0.9 J 0.7 0.6 0.3 0.5 0.7 0.8 0.9 j

2.5.3: The Search

The search through the image now begins. The first step is the forward pass which
starts with the pixel at position (1, 1) in the upper-left corner. The pith likelihood for
alfeift at pixel (1, 1) is derived as foIlows~

~‘alfalfa ,(1,1) 0alfalfa,(1,1) X AVERAGE[

~13top,(:nitiafl x T,op,aIfsIfa,p1~~m
) and

~ left ,(initiaI) x ~~~~~~~~~~~~ I
— 0.9 x AVERAGE( (1.0 x 1.0) and (1.0 x 1.0) ]

— 0.9

Notice that the initial PPEs are defined to have the likelihood value 1.0 and that all
transition likelihoods are simply 1 or 0 depending on the PPE connection. By similar
computation, 

~barley,(1.1) — 0.4 arid 
~~ rn,(1,1) is undefined. This last path likelihood

Is undefined because the transitions are n t  allowed in the WEST directIon. Once both
S valid PPEs have been calculated for pixel (1, 1), th, beam is updated. In this case , 

-

barley is pruned because its path likelihood Is too low. (In this example , anythi ng .5 or
more from the best likelihood is pruned. ~~~~ has the val ue 0.4.) The remaining
vslue is normalized to 1.0.

f At pixel (1.2), the three PPEs are evaluat ed again. Obs.rve the path likelihood of
barie

~ 

at pixel (1, 2):
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t’barley ,(1,2) °bar ley ,(1,2) x AVERAGE(

~ top,(initial) x Tto p,barleyJJr~RrH) and

~ alfalfa,(1,1) x Talfalfa,barley,WEST))

— 0.9 x AVERAGE( (1.0 x 1.0) and (1.0 x 1.0) )

.5 
— 0.9

At pixel (1, 2), ç~~~ is again pruned because there is no bariey to the west of it.
Therefore , only two PPEs are valid , neither of which is pruned. At pixel (1, .3), elI
three PPEs are retained In the beam. This is the computation of barf y at (1, 3):

“barley,( 1,3) Obarley,(1,3) x AVERAGE{

S 

~
1’top,(initial) x Ttop,barleyj~J~~TH) and

- Max( 
~ alfalfa,(1,2) x Taifalfa,barley,WEST)P

~ barley,( 1,2) X Tbarley,barley,WEST) 
3 }

S 
— 0.9 x AVERAGE( (1.0 x 1.0) and Max( (.667 x 1.0), (1.0 x 1.0) 3 )

- 0.9 x AVERAGE ( 1.0 and 1.0 )

- 0.9

The diagram below shows the status of the search tree after the top row of the Image
has been scanned:

(1, 1) (1, 2) (1, 3) (1, 4)
U l 

OJ.. I

~~ 
O4~~5S7 I ’ ~~~~ 1 ..O~W

_ _ _

The two numbers above each PPE node in (he search tree Indicate ths path likelihood
values before and after normalization.. Observe that certain paths are rejected (R)
because th.re are more optimal parents. The forward pass now advances to the
second row and scans It from $.lt to right (west to east). PIxel (2, 1) has only two
choices: g~jgjf ,g (norma lized likelIhood 0.667) and 

~i~Jcy (lIkelihood 1.0). PIxel (2, 2)
also has these two possibilities because ç

~~ 
was not allowed at pixel (1, 2). Lets

examine th, likelIhood calculation for bsrIgy~ at pixel (2, 2). It is quite complex:

.5 
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.1’ . 5 . 5

Pbar~ey,(2~ )I °barley,(2 2) x AVERAGE( 
- 

.5

Max( 
~‘at f alfa ,(1,2) ~ 

Taif all a,barley,NORTH~’

~ barl.y,( 1,2) X TbarIey,barley,~~RTh) ] and

Max( 
~ alfalfa,(2,l) x Talfalfa ,barley ,WEST)

~

~
t’berley,(2,1) X Tbarley ,barley,WEST) I)

— 0,7 x AVERAGE( Max( (0.667 x 1.0), (1.0 x 1.0) 3 and

S Max( (0.667 x 1.0), (1.0 x 1.0)])
S 

— 0.7 x AVERAGE( 1.0 and 1.0 )

F — 0.7 -

The completed forward pass, with row two, is shown below. Notice that row one has
been simplified to Its pruned normalized paths.

(1, 1) (1, 2) (1, 3) (1, 4)
r 

.5 .0 01$? 0350 GIll

03-là 0.7.13 04.0315 0271.011MG

I c : c J :  
. ~. 9’! L~

_ L 
(2, 1) (2, 2) (2, 3) (2, 4)

- At the end of th. forward pass , the beam, which was constructed from unpruned
optimal paths , looks like this: -
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(1, 1) (1, 2) (1, 3) (1, 4)
.

5

. 

_

_ _ _  

Li
L 

(2, 1) (Z 2) (2, 3) 
-

The backtrace starts at pixel (2, 4). m~ terminal PPE (arrow entering from the
bottom) indicates the ç~~~ label for th is pixel because it had the highest path likelihood
on the forward pass. From there, the ~~ .t 

(2, 3) is selected (just follow th, arrows)
and barley is selected at (2, 2) and (2, 1). Next, pixel (1, 4) is labeled and ~~~ is
easily picked. At pixel (1, 3), however , there is a conflIct. The child .t (2, 3)
recommends corn but the child at (1, 4) recommends barley. The conflict is resolved
by observing that the barley candidate would be inconsistent with the ~~~ to the
south of it, whereas the çg~~ candidate is consistent with both children. There us no
other conflicts in the backtrace and the final two pixels are quickly and unanimously
selected to be barley and alfalfa. The final labeli ng is:

Alt alf a Barley Corn Corn

Barley Barley Corn Corn

a5.4: Comments S

A dangerous situation arose in the above labeling which could have had disastrous
results. The pixel at (2, 4) was correctly labeled ç~~ but could have been labeled
iiLsi! ,i, If ii1iLt ~ had been stronger , the entire scene would have been labeled affiffi
and that is an illegal labeling. How could that happen?
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The toy nature of the example helped to encourage the possibility of illegal labellngs.
Wit h only two directions of constraint, there was very little knowledge guidance during
the search. By the addition of two more directions, NORTH-WEST and NORTH—EAST,
this problem is completely avoided because alfalfa Is then denied adjacency to the
right side in the NORTH-EAST direction. In addition, the use of minimum path
knowledge, which limits PPE proximity to edges based on the number of legal S

S transitions required to adjoin the edge, would have pruned many PPE nodes in this 
- 0

example. However this knowledge is seldom used in larger Images.

- The bottom line is: the more knowledge, the better, in fact, even the four directions
that ARGOS uses are inadequate for complex labeling tasks. It’s not that Locus is
weak, only its knowledge is weak. The next chapter disc usses other forms of
knowledge that are av~ilabie to enhance Locus search.
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CHAPTER 3: KNOWLEDGE (
~~~flJi ~

searc h, as t he last chapter presented It, uses only one kind of knowledge:
region adjacsncles. This adjacency knowledge forms the basic structure of the
network that Locus searches , but It is not the only knowledge that can be brought to
bear. In fact, as this chapter wilt show, there appears to be no major limitation to the
knowledge that can be used in Locus search.

3.1: ADJACENCY KNOWLEDGE

Before examining additional forms of knowledge, it is appropriate to discuss the exact
method used to acquire region adjacency knowledge. Locus networks contain the

- extracted adjacency knowledge from many hypothesized views of an internal model of
the scene. The Internal , model, which in the case of Pittsburgh city scenes Is
constructed from street maps, is a three-dimensional model of the city which can be
used to generate all possible views of the city. To build a knowled~• network,
selec ted views (or hypotheses) are generated and added as separate - paths1.

Th. non-obvious aspect of building a network from multiple views is that a reg ion
which appears on different views is sometimes represented with separate PPEs and at
other times is merged into one PPE. The decision to merge is based on a similarity
measure between the PPEs. Observe the following two views of the Alcoa Building:

1 See Chapter 4 on knowledge hierarchies for a discussIon of how the views are
selected.
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US. Steel Gimbles Alcoa 1 below US. Steel
Alcoa 1 lef tot U.S. Steel

Alcoa Alcoa Alcoa2 below Gimbles
Alcoa2 let tot Gimbles
Alcoa2 ri ghtof Gimbles

In the figure above, the Alcoa ~j~g appears in front of the ~~~ ~j .~!j ~~g in one view
and in front of Gimbels 

~~~~ ~f~j  in another view. It is represented with two PPEs
in the knowledge network that reflect the five adjacencies listed above. This is
because the two views happen to be from opposite directions and then, are no
common adjacencies between the two ~~~~~~~~ ~~g regions. If, however, two views show
the Alcoa ~j~g alternately to the left of the 

~~~~~ ~~~ ~j~g and to the right of the %J,~~~

~~~~ ~~ g as in the following diagram, then these two instances of the Alcoa ~~g, are
likely to be merged into one PPE which has the transitions shown.

U.S. Steel U.S. Steel

Alcoa - Alcoa Alcoa below US. Steel
Alcoa leftof US. Steel
Alcoa rightof US. Steel

The decision to merge PPEs from different views is based on many factors including
the relative size and position of the two PP~ regions. For a detailed discussion of the
merg ing algorithm , see section 5.2.1 on network size reduction.

Although some knowledge is necessarily lost when regions are merged into one PPE, it
is mandatory that the networks be reduced or else each hypothesized view will be
stored as a separate path through the network. This not only makes the networks too
large to search , but forces the beam to contain at least one path for every view, if

.5 that view Is to be considered in the labeling. It has been found that frequent region
merging produces optimal labeli ng results because little information is lost and the

S search is much easier (see section 5.2.2).

The remainder of this chapter discusses how the location, size, and shape of a region
can be used to aid the Locus labeling process. Even pre-segmentat ion , where
arbitrarily shaped areas are presented for labeling, can be considered to be a source
of knowledge.

.5 
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3.2: PRE-SEGMENTATION

ARGOS does not explicitly segment: it labels. SegmentatIon is the division of an image
into distinct areas , each of which is a separate object in the image. Labeling is the
identification of each object. Many image understanding systems segment their imabe
first and then label the segments (Sakai et. al. 1976; Williams .t. al~ 1977). ARGOS is
able to take pre-segmented images and label the segments, but It is also able to take
unsegmented images and “post-segment them. What this means is that it Is possible
to view the labeled output as a segmentation since the labels are grouped Into distinct
clusters within the image.

T Pre-segrnentation, therefore, is the use of images tha t have been segmented (by ~~~~unknown but reliable algorithm) before ARGOS labels. Some reasonable choices of pre-
segmentation algorithms are clustering (Ohlander, 1975), and other multispectral
classifications (Kettig and Landgrebe, 1976; Rodd, 1972). ARGOS Is currently running
with a clustering algorithm that Is derived from Qhiand,r’s work (Shafer and Kanade,
1978). The us. of pre-segmentatlon ‘has the advantage of time and space saving
because there are many fewer nodes In the search tree, typIcally two orders of
magnitude fewer. In addition, there is increased accuracy when using pr.-
segmentation since smaller numbers of search tree nodes can be constrained better.
Th. only disadvantage of pre-segmentation knowledge is that care must be taken to
ensure that enough segments are found. It is only marginally harmful if there are too
many segments because the labeler can simply give multiple segments the same label,
but if there are too few segments, then there will be continuity gaps in th. adjacency

.5 

and th, search will fail. S

3.3: LOCATION KNOWLEDGE
S Everyone knows that mountains are usually found in the top part of an Image. This

sor t of location knowledge is separate from adjacency: It is absolute position as
opposed to relative position. The use of location knowledge is quite easy and requires
only two steps: learning the knowledge and using the knowledge.

Learning location knowledge is dons at the same time as the earning of region
adjacencies. Each hypothesized image that is combined into the knowledge network
has a minimum-bounding-rectangle (MBR) drawn around each region. A minimum-

L bounding-rectangle is simply the rectangle formed by lines parallel to the X and V axes
which pass through the smallest X, largest X, sma llest Y, and largest V co-ordinate in
the object. Thus, It is the smallest box that can be drawn around the object which is
parallel to the X and V axes. When regions from two hypothesized Images are merged, S

L their M8Rs are combined into a new MBR that includes both regions. The resulting
knowledg. that is extracted I. an MBR for each PPE. in some cases, the MBR contains

• useful information and in other cases It doesn’t. If, for example, a building appears In
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many different places across the hypothesized images, then the knowledge contained
in the combined MBR will not constrain the building’s location. But that is a form of
knowledge which says: this building may appear anywhere.

- 
It should be noted that the proximity of the MOPs is used as a factor when deciding
whether or riot to merge two regions. This prevents the creation of networks that

- 
hav, meaningless location information.

It would be possible to extract an exact template or the pixels occupied by each
region. When regions merged, the new template would be formed from the union of

.5 the old templates. However, this much detail is not necessary for Locus since the
hypothesized views are imprecise at the outset.

Using location knowledge is easier than obtaining it. In the unsegmented system, each
pixel that is being evaluated during the forward pass is either in the MOP of a PPE or
it isn’t. If it is in the MOP, then no action is taken. If it is outside, then a penalty is
added to the path likelihood equation for that PPE-pixe( node in the search tree. The
pre-segmentation version of ARGOS uses the segment centroid to determine location
violation in the same manner. The penalty gets stronger as the pixel gets farther from
the MOP of the PPE. Thus, Locus doesn’t reject a label assignment if it violates
location knowledge, but the likelihood begins to decrease as a pixel strays from Its
expected location. Unless there are other factors in th. path likelihood equation that

— override the location penalty, the path will soon be prun.d from the beam. This is
how Locus search allows imprecise knowledge to be used without completely
destroying the labeling.

a4: SHAPE KNOWLEDGE

Shape is hard to define because it has many aspects. This section will discuss a
number of methods of describing shape. Some are better suited to pre-segmented
images , others wor k best with unsegmented images , and a few are totally useless to
ARGOS.

When ARGOS us.s pre-segmented images, it must match the shape of an area of the
image to th, expected shape in the knowledge network. it is not sufficient to pre— S

compute thi shape of each segment in the image since segments may combine during
the search due to sell-transitions in th. network. ARGOS must be able to dynamically
evaluate the shape of a group of segments and compare it to the shape specified by
the PPE which is labeling thes. segments. Although there are many choices of shape
descriptors includIng bit masks and moment invariants (Hu, 1961), four sImple shape S

measures were selected which make us. of the segment perimeter and ares.

Th. simplest shape measure used by pre -segmentation ARGOS Is fractional fill. This Is
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the ratio of the area of the segment to the area of its minimum bounding rectangle.
Another measure of shape is called compactness. This is the ratio of the perimeter
squared to the segment area. Both of these measures distinguish compact segments

.5 from 0loose segments. Two other shap. descriptors that are used are orientation and
elongation. These are derived from the first moment of the Fourier transform and
indicate the angle of an elongated segment and the amount of elongation. For more
detail, see the thesis of Keith Price (Price, 1977).

The shape measures used by pre-segmentation ARGOS are matched with the same
weighted Euclidean distance metric that was described in sect ion 2.3.2. The only detail
that must be obsirved during this process is the fact that orientatIon is cyclic , so the
distance between 100 and 3500 Is 20° not 340°. The results of the distanc. metric
are used as a penalty in the path likelihood equation, thus allowing shape to
collaborate w ith the other knowledge sources.

The above set of shape measures does not completely describe a segment’s shape.
The only perfect shape descriptor is a copy of the desired shape. It would not be
terribly expensive to retain a template for each PPE in the knowledg. network which
would describe the exact shape of the expected region. Unfortunately, it is difficult to
apply this kind of knowledge to Locus search because It is hard to determine where in
the template a given search tree node Is. For example , notice the following template
for a cross-shaped PPE region:

1 1 1 1 2
- I I  3~4-

1516 7 1 8 9 0
~~~~~~~ 2 3 ~~~~~~~~ 5 6

This template describes a region with 20 points. If an isolated instance of that PPE is
detected during the forward pass , which element of the template should that pixel be
associated with: 1 or 5? II is not enough to remember all previous instances of that
PPE in the beam because, after the first row of the template has been scanned, there
will be uncertainty about where to place the patt ern unless it appears In the beam
•zectLy twice. Matching irregularly shaped segments is even harder. Tfte multiple
option philosophy of Locus indicates that some uncertainly Is expected in the forward
pass so It doesn’t know what to do with precise knowledge. BesIdes, the use of
extensive look-back in the search Is contrary to the heuristics used in Locus because
of the amount of time and space needed. And, of course, there is the problem of what
template to store for PPEs that have been created from merged views of a region.
Th. template method of storing shape knowledge Is nice, but effective use of it In
Locus search Is not well understood.

It might b possible to Incorporate shape templates into the back trace. These
S temp lates would be used to help resolve conflicts by rejecting optIons that do not fit.

It would be easier to work the precise knowledge of a template Into the backtrace
because there is no uncertainty: each PPE selected by the backtrace is unIque to that
pixel position.

49

— 

-5 
A~~~~_  — t~~~~~~~~~ — 

5 -— —



A more natural shape descriptor for the forward pass (which is used in unsegmentation
ARGOS) is dim.n;ional shap.: the specification of shape by the use of PPE dimensions
at various angles. In the above cross example, the dimensions of the PPE region would
be taken along the four directions of adjacency. The horizontal dimension would be 2-
to —6 pixels , meaning that any horizontal slice through the reg ion contains at least 2
and at most 6 pIxels in a row. The vertical dimension is the same, and the two
diagonals are both 1-to-4 pixels. Dimensional shape is well suited to descriptions of
regular objects like buildings. l4owever it fails in any attempt to describe complex
shape like a skyline. It will be shown, however, that even a skyline can be described
to Locus search.

Dimensional shape is easy to extract from the hypothesized views and, of course, Is
used as a factor - in region mergings. Note, however, that the accumulation of
dimensional shape can easily lead to useless information if the hypothesized views are
taken too literally. Therefore, ARGOS rejects abnormal range values during the
accumulation of dimensional shape. For example, suppose a building has one pointed
turret above a wide main structure. Rejection of the abnormally narrow turret point
would prevent the PPE description from having a horizontal lower dimension of 1 when
there is really only one point in the PPE that is so narrow.

Dimensional shape is easy to implement in the forward pass of Locus search. All that
is needed is four counters with every beam entry that specify the dimension (up to
that point in the raster scan ) of that PPE. Whenever a PRE is added to the beam, its
dimensions are simply set to be one greater than the four surrounding PPE dimensions
in the beam. When a PPE transits to a different PPE and the former one has
insufficient dimension, the transition is penalized. Similarly, a PPE that transits to itself
too often and exceeds the maximum dimension is penalized. Like location knowledge,
the penalties become more severe as the distance from the dimension limit increases.

Shape measures occasionally miss an important feature of a segment because they
describe shape in such abstrac t terms. There Is a very simple solution to thIs problem
which requires that all regions with complex shape be broken down into multiple

.5 regions that are less complex and are adjacency constrained to form the overall shape.
Returning again to the cross example, the region can be broken down into five PPEs,
each a 2x2 square which is easily describable with simple shape measures. These fIve
PPEs can then be constrained so that they adjoin in a cross pattern with one in the
center and four surrounding it. Of course, this technique requires extra network space
and search time, so It should only be used for pathological shapes. However, it does
allow arbitrarily shaped objects to be described.

3.5: SIZE KNOWLEDGE -

Size is usually separate from shape. However , the cross example in the previous
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section shows that the shape measure used by ARGOS also specifies information about
- the size of the cross. This section discusses how independent size knowledge can still

be used, even with dimensional shape knowledge.

Recall that dimensional shape describes the cross as a segment with horizontal and
vertical dimensions of 2-to -6 and diagonal dimensions of 1-to-4. Th. following region
fits that shape:

- 
- 

. 

1 1 1 2 1 3 4 5 6
171819 0 1 2

It3~4~5 S 1 5
I1~Po~1 2 3 4

Size knowledge can prevent the above region from matching this description: it has
twenty-four pixels and the cross has only twenty2. Size is defined as an upper limit
on the number of pixels in a region. PPEs that transit to themselves too often will
violate the size limit and penalize their path likelihood. Like location and shape, size is
extracted from the hypothesized images and used as a factor in network mergings.

t Unfortunately, size is not effective for ARGOS when labeling city scenes. It will be
shown in section 5.2.3 that size knowledge of this type works against correct labeling
because of a quirk interaction between the search order and the nature of object

S shap es in natural scenes. However , this type of knowledge Is still useful for Locus
- search in general.

There are other ways to implement size knowledge that have not yet been explored.
Size can be used in the backtrace to resolve conflicts in much the same manner as
shape. In addition, it is possible to implement relative size knowledge that is able to
make statements like ‘j  is twice as large as ~~

“
. The implementation of this would

require that the knowledge network have access to registers during the search.
Various network nodes would store knowledge in these registers for use by other
nodes. This scheme I~ similar to Augmented Transition Networks (Woods, 1970).

3.6: KNOWLEDGE CONSTRAINT

Th. knowledge sources that are used in ARGOS are not used Independently. They are S

all descriptive aspects of regIons , so they should work together. ARGOS currently has
location, shape, and size implemented. It is reasonable to expect that the search is

2 Notice that there is a fine line separating the size knowledge from the dimensional
shap e know ledge; in fact they really work together. 

S
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more effective if these three are constrained to a hierarchical scheme where lower
knowledge sources in the hierarchy are only accumulated if higher knowledge sources
are not being violated. The highest knowledge source is location because it constrains
region identification most; the lowest knowledge source is size.

Implementation of this hierarchy implies that shape information be accumulated only
for nodes in the search tree that fall within the minimum bounding rectangle of the .5

S 
PPE. At the other end of the hierarchy, size information is only accumulated I or nodes
in the search tree that fall within the shape bounds. The need for this hierarchy is
apparent because there is no point in including incorrectly positioned pixels in the
computation of shape: it can only damage the shape measure. Similarly, inclusion of
pixels that violate shape bounds will adverse ly affect th. use of size knowledge.

In experiments, the use of knowledge constraint was not found to give significant
improvements. However, ARGOS contin ues to use it for the slim advantage that it does
yield.

3.7: CONCLUSION

Some forms 0f knowledge can be used with Locus more effectively than others. Since
ARGOS is designed to be efficient, it does not attempt to Incorporate knowledge 5

schemes that are unnatural for Locus search. However, it is still felt that any
knowledge can be used in-some form.

This chapter discussed region knowledge that can be put into a network. The next
chapter discusses how to make a series of networks that bring snore complex
knowledge to bear on the labeling of Images. -
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CHAPTER 4: KNOWLEDGE HIERARCHIES

I~~l1
~.

1p to this point, all discussion about ARGOS has centered around the labeling of .5

Pittsburgh city scenes. A knowledge network has been described which can identify
various views of the city and selected images have been successfully labeled. What
about scenes of other cities such as New York? What about non-city scenes? There Is
a continuum of knowledge in the world and Pittsburgh is just one pied, of it. The

S assumption that has been made is that each micro-world requires a separately S

designed knowledge network. This chapter is concerned with the techniques that can
be used to label arbitrary scenes without the need for manual selection of networks.
Although few of these techniques have been implemented, they provide some direction
for future research.

The first thing that should be pointed out is that there is a reasonable upper limit to
the amount of knowledge that a network can hold. Although current computer
technology imposes its own limits, there are theoretical upper limits that should also be
observed. Therefore, it is not reasonable to build one large network with all available
knowledge. In particular, the continuum of knowledge can be divided into hierarchical
levels and a network should always bridge two of these levels. This bridging

S effectively applies knowledge that has been acquired at a higher hierarchical level to
the acquisition of knowledge at a lower level. S

For the purposes of this discussion, all image knowledge will be divided into three
hierarchical levels. The top level is the scene level and contains all of the scene types
that can be distinguished by the image understanding system. Another way to think of
this level is as the schema or frame level. Examples of scene types are: city scene,
office scene, satellite scene, etc. Below this level is the viewpoint level which is
concerned with the angle and distance of view. At the bottom is the object level
which, given the environment and viewing position, concerns itself with correct
identification of the objects in the scene. S

These levels of knowledge are not the typical levels that other image understanding
systems (such as Sakai et. at., 1876; Uallard et. al. 1977; Williams et. at., 1977)
recognize: pixel within object withi~i region within scene, etc. Locus networks combine
those minor levels into a uniform structure. ARGOS hierarchies are organized along
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general-to-specific lines (scene to view to object). The hierarchy spans the full depth
of knowledge and is organized to extract a varying level of understanding from the
entire image.

The three levels of hierarchy that ARGOS recognizes span quite a lot of knowledge,
especially the top and bottom levels which are infinitely extendible in their respective
directions. For example1 the object level can attempt to identify the buildings in a city
scene or, at a lower level of detail, all of the windows in all of the buildings’ or , at a
higher level, just the major features of the scene such as sky and mountains. Similarly,
the scene level can identify a scene as “city of Pittsburgh,” “city,” or just “outdoor
scene.” There are even many distinctions to the middle category (viewpoint) such as
view angle and view distance.

The rest of this chapter discusses how ARGOS could use hierarchies of knowledge to
completely identify scenes. At the end is a discussion of where ARGOS currently
stands in its hierarchical use of knowledge.

4.1: TODAY PITTSBURGH, TOMORROW THE WORLD -

As the last cha pter discussed , the ultimate source of knowledge is the internal model.
This model is an actual three-dimensional description of the scene to be viewed. Since
the assumption behind the use of knowledge hierarchies is that there is too much
knowledge to be completely specified by one network, it will be assumed that the
model is very large, perhaps a representation of the entire United States.

Before discussing the use of very large models, it is appropriate to mention their
creation. ARGOS does not address the issue of automatic m odel generation or learning,
but It would be possible to attach a feedback loop onto ARGOS which would use
labeled knowledge to modify the existing model. More sophisticated learning systems
could build additions to the model solely from examples found in the existing structure,
but that is completely outside of the scope of this thesis. Therefore it must b
ass umed t hat the scene models are built by hand.

Hierarchical use of model knowledge always starts at the most general end of the
hierarchy with identification of the scene type. Even humans star t with this point of
the knowledge hierarchy by first determining the “gist” of the scene (Akin and Reddy,
1976). This scene type identification process involves running the scene through a
pass of Locus search with a knowledge network that contains only the major
components of each scene type in the model. For example , if the model contains
twenty cities, then the knowledge network used to identify the correct city might
contain PREs only for those major regions of each city that distInguish it from another.

1 down to the leve l of resolution of the sensed image.
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Pittsburgh would have ti~~~ 
and mountain PPEs and perhaps one for the 

~~~~~ 
Steel

~~~ 
which is a landmark. Other cities might employ ocean. countrysIde. or even smnoi

PPEs. Even the shape of the skyline can be used to distinguish cities.

Once the search is run on this network, it Is easy for the machine to examine the
labeled output -and determine th. selected city. This is because each PPE is tagged
with the name of the city or view that generated it2. With city knowledge in hand, the
machine can generate a more detailed network of the identified city which explores the
scene at a ower level ~n the knowledge hierarchy. For example, 50 different views of
the identified city can be hypothesized to form the next level network which would
extract view angle and/or view distance. Note that there Is no restrictIon on the
number of Locus search itarations that can be done at a given level of hIerarchy. If
the world model contains 2000 cities , it might be reasonable to break the scene-type
hierarchical level into two passes of Locus s arch; one using a network to classify
them into major types (éities with tall buildings, cities near water, etc.) and then
another pass with a more detailed sub-network to select from th. identIfied types of
cities.

Locus networks, therefore, form a tree structure that spans the knowledge hierarchy.
In less complex world models it might be possible to pre-comnpute all of the networks
and store them for possible use in the hierarchy traversal. In more complex models,
these networks must be generated by the machine at each decision point in the
identification process.

Extremely complex models have the interesting property that the lower (more specifIc)
levels of knowle dge networks alt look the same. For example, once the proper city and
building has been identified, the details of the building are very similar to the details
of any other building. These models no longer have a tree structure to their
knowledge hierarchy: it is now a network structure that re-combines knowledge paths
.t the lower levels. Add to this observation the fact that there is bound to be noise
and error in the hierarchy searching process, and a f ascinating observation is made:
Locus search can 6. used to guide the seL,cU.n of knoe~.dg. networks. All of the
efficient, non-backtracking search can be used at a much higher level: the Primitive
Knowledge Network level. So Locus search can be used both for labeling pixels within
images and for labeling images within world models.

Is there a higher dimension that Locus can run on? It is possible to envision
hierarchies of world models which vary according to the intent of the mode l creator.
A city planner would build a world model that reflec ts the populated vs. unpopulated
areas of cities because the planner Is concerned with growth trends. A military
tactician wou ld build a model that conta ins only strategic points, be they telephone
sw itch ing centers or harbor docks. So there is a higher level of knowle dge that sits
on top of the hierarchies discussed In this chapter. This level deals with the actual
semantics of an Image and can Indisputably be called Image understanding.”

2 Even those PPEs that are merged in the network reduction process can retain
ambiguous information about their source.
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4.2: KNOWL~OGE US~O BY ARGOS

Needless to say, ARGOS is not able to analyze any scene In terms of arbitrary levels of
understanding. In fac t, ARGOS Is barely able to transmit results from one level of the
knowledge hierarchy to another. It does demonstrate the use of hierarchical
knowledge with a simple task. The task that was selected was highly dependent on
the images that were available. Since the f ifteen images were all of Pittsburgh from
five different views, the obvious hierarchical tasks were view angle Identification
followed by object identification. S

View angle identification consists of building a network with many views of the city.
This task used 24 v i ws at 15° intervals around the city. Prior to network
construction, the number of significant objects on the city was reduced from 58 to 16
(see Appendix II). This is because the view angle task is more general than the
knowledge base which was selected for the object identification task. The selection of
16 PPEs was done automatically by examining the 24 machine-generated views of the
city and counting the number of times each building contributed to the skyline. Any
building which formed part of the skyline in over 502 of the views was kept as a
separate PPE. The other buildings were eliminated from the list and merged into the
Miscellaneous Buildings PPE.

To determine the angle of view for each photograph of the city, ARGOS labeled each
image and extracted the most popular angle from the labels (recall that each label
includes information about the original view or views from which it came). ARGOS
typically selected one or two angles and the values were in error by an average of
300 for the training Images and 500 for the test images.

Th. next level of the knowledge hierarchy is the object identification level.
Presumab ly, ARGOS should be able to use the predicted angles from the view angle
runs and use that knowledge to improve the object identification. A number of
schemes were tried , none of which y ielded significant Improvement in the object
recognition.

The first experiment in knowledge hierarchy traversal involved building new networks
using the predicted views from the view angle task. This sounds like a good thing to
do, but it constrains the search too tightly. Also, If there is any error in the predicted
view angle, then the search is totally destroyed because the global path is guaranteed
to be missing from the knowledge network.

The next step involved using the error of the view angle task as a guide in building t
the object Identification networ ks. Instead of networks built only from th. predicted
view , ARGOS built networks from the predicted view plus a range of 450 on either
side. Thus the average view recognition error was used to dete rmine a range of v iews
In the object identification task. This still refused to yield worthwh ile results because
the network used in object identification needs to be rich in transitions.

A completely different approach was then tried. The selected view angles were S

implemented as a knowledge source that penalizes transitions to PPEs that are not in
the proper set of angles. For example , If a photograph was estimated by ARGOS to
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have been taken from 1200, then the object identification task would penalize
transitions to PPEs that are not tagged with angles between 75° and 165° (remember
the 45~ error). This technique not only yields the best results, but It has the added
advantage that the object identification network does not have to be re-built for each
image. The only disadvantage is that the object identification network is fairly large
since it must contain knowledge about the entire view angle identification task. -

S

5 The surface has only been scratched with respect to hierarchies of knowledge. Future
results can be expected to be much better. The next chapter discusses the precise
environment of the testing that was done with ARGOS. In spite of many noisy and
inaccurate sources of knowledge, ARGOS performed well in the labeli ng of real-world
scenes.

- I-
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- CHAPTER 5: RESULTS

ihis chapter describes a series of experiments that were made with the ARGOS
S image understanding system. The system as depicted below has three main parts: the

image subsystem , the knowledge subsystem , and the match subsystem.

Image Subsystem Knowledge Subsystem

r~~i ~~~~~~~~ 
_

I Labeling 1~~~~~~\ 
Im.~. ‘ Ma ~~~~~~~~~~~~~ V,.w

- P Hypo th.u,,

HU~d R duction
L~~~~&. 

- 
VIew View View

- 
Match Subsyst em

Signal RSdUC d - Net rkExtractor Im.t. Locus — 
P4.t.~~~ Creation

S t r

The image subsystem of ARGOS was described in Chapter 2. It consists of a series of
programs that reduce large images to a workable size and accumulate useful feature
vectors for each pixel. In addItion, this subsystem allows interactive segmentation and
labeling of the sensed scenes for use in result evaluation and for the ex traction of
signal-to-symbol information.

- The knowledge subsystem creates networks. It contains programs for building the city
model from maps, sketching views of the city model, extracting knowledge from the
views, and building networks from the extracted knowledge.

Th. match subsystem is the program that uses Locus search to label Images. It takes
signal and signal-to-symbol data from the image subsystem and matches that w ith
networks from the know ledge subsystem to generate labelIngs of images.
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The remainder of this chapter describes the test environment in detail and examines
some of the more Interesting results that were obtained.

— 5.1: INPUT

In the beginning, there were fifteen pictures taken from five different vantage points
about the city. These images were segmented and labeled by untrained humans (i.e.
people who were not familiar with ARGOS and who, in many cases, were not able to
identify the buildings in each picture). The purpose of this human labeling was quite
simple: a metric with which to measure of the quality of ARGOS labeling. The fifteen
labelings appear in Appendix VI.

Once the images were labeled, it was possible to select a set of PPEs. 58 PPEs were
selected, four of which do not appear in any of the images. At this time, seven of the
fifteen pictures were chosen as training data and were used to extrac t signal-to—

5 
symbol information. Appendix II lists the 58 PPEs and which of the images they were
trained on. It was decided that the training images would be the only ones used in all
subsequent experiments. It would not be until ARGOS was completely tuned that the
other eight images, the test images, would run.

S Next came the knowledge engineering step. The map in Appendix III was digitized to
produce the computer map in Appendix IV. Notice that only the selected PPEs were

f 
S digitized. Elevation information was obtained very crudely by telephoning building

superintendents and various architects. Note that this inaccuracy, as well as other
inaccuracies in ARGOS, was not refined for optimal results both because of the non—
production environment of ARGOS and the ability of Locus to handle noisy data. This

S three-dimensional model of the city is constructed entirely of planar surfaces.
Although there are more sophisticated representation techniques (Nevatia and Binford,
1977; Reddy and Rubin, 1978) this technique serves ARGOS adequately.

With a machIne model of the city, “hypothesized” views could be made (see Appendix V
for examples). The amount and type of views varied with the task. Region adjacency,
location, shape, and size knowledge was extracted from the hypothesized views and a
knowledge network was built. ARGOS was now ready to run.

• 
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5.2: EXPERIMENTS 
S

S ARGOS has many parameters which must be tuned to get optimal performance. Some,
such as the pruning cutoff , have already been mentioned in previous discussions and
others are of little interest. This section describes three of the more interesting
experiments which answered these questions:

1) What knowledge should be considered in the merging of PPEs from different
- hypothesized views during network creation?
2) How much of the PPE merging should be done during network creation?
3) Why is size knowledge not useful?

5.2.1: Use of Location and Shape in Network Reduction .5

S 

Three algorithms were proposed for the merging of multiple instances of PPEs from
different hypothesized views (see section 3.1). Each algorithm allows PPEs to combine
if a certain percentage of their region adjacencies are identical. The algorithms differ
onl y in the amount of consideration they give to location and dimensional shape
knowledge ~.

The first algorithm uses no location or shape knowledge. It merely compares the
adjacency knowledge and merges the PPES if the percentage of their identical
adjacencies is above the threshold for merging. Recall the second example of section
3.1. The Alcoa ~~g appeared in front of the IJIL ~j~~j ~~ g alternatIvely to the right
and the left in two hypothesized views. Using only horizontal and vertical adjacencies,
the Alcoa PPEs in these two views share 50~ of their adjacencies (each agrees on the
vertical and disagrees on the horizontal). If a network is built that allows an adjacency
reduction threshold of 50Z or less, then the two Alcoa PPEs will be merged (as they
were in the example in section 3.1). Notice that this merging algorithm has not
considered the shape or location of the PPE regions: it merges solely on the basis of
adjacency similarities.

The second algorithm depends highly on location and shape knowledge. Not only must
the two PPEs being considered for merging have adjacencies that are identical to a
fixed percentage (as in the first algorithm), but the centers of the minimum-bounding-
rectangles (as defined by location knowledge) must be within the same percentag e of
the image size. In the above examp le, If the centers of the minimum—bounding-
recta ngles of two Alcoa PPEs were more than 50 pixels apart in the horizontal
direction , then ‘SOZ reduction would allow merging on the basis of adjacencies but
would prevent the merge on the basis of location. This Is because the image is 100
pixels wide and the regions are more than 50~ of that apart. In addition to using

— location knowledge, thIs second algorithm requires that the minIi~um and maximum

1 It will be shown in section 5.2.3 th at size knowledge is not usiful. Therefore , it Is
not consIdered here.
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dimensional shape limits (in all four directions) be within tolerance to each other. By
tolerance is meant that the smaller value must be at least the fixed percentage of the
larger value. Returning to the example, if the two hypothesized views are from such
different distances that the dimensional shape bound of one is more than twice the
size of the other, then the merging will not occur.

The third algorithm uses the same technique as the second algorithm except that it .5

relaxes the restrictions on shape. Only maximum dimensional shape is - compared, arid
only in the horizontal and vertical directions (not in the diagonal directions). The
effective result is that the sizes of the minimum-bounding-rect angles are compared.
This last reduction algorithm was consistently found to be superior to the others in all

S of the ARGOS tasks.

5.2.2: Determination of Network Reduction Amount 
S

Using the selected reduction algorithm from the previous subsection, eleven networks
were built with varying percentages of reduction. These networks were generated for
the object identification task and contained enough views to label all of the city
images. The following table shows the percentage of reduction, the number of PPEs in
th. reduced networks, and the branching factor of each network. The branching factor
is the average number of arcs (in each direction) fmanating from a typical PPE.

Reduction PPEs Branching Factor
100 274 3.1
90 273 3.1
80 259 3.1

- 70 231 3.2
60 183 3.5
50 132 3.8
40 114 4.0
30 95 4.4
20 77 4.6
10 66 5.0 .5

0 58 5.6

Th. first traini ng image was run on all of these networks. The larger networks Were
unable to label this training image because the beam (which allowed 75 paths for this
experiment) could not hold all of the independent paths. Only the lower , three
reductions gave good results , so all of t he training images were run on them.

The 02 and 102 networks gave relatively equal results , both of which were slightly
better than the network with 202 reduction. The choice, then, Is between 102
reduction and 02 reduction. However 02 reduction, by definition, does not allow
extraction of the identified hypothesized view since all hypotheses of the same region S

are merged. Therefore the 102 reductIon is considered best for this object
identification task.

5 
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5.2.3: Rejection of Size Knowledge

In all experiments tha t used size knowledge, the results were worse than without it.
The following explanation is offered.

When the location and dimensional shape of a region have already been specified, size
knowledge serves only to prevent the region from “ filling out” its prescribed area. - S

Since Locus works in raster scan from top to bottom, only the excess pixels near the
bottom of the region will be penalized because they are the first pixels that exceed
the maximum size. Therefore, size knowledge is useful in defining regions that are
large near the top and get smaller near the bottom because it penalizes the bottom
area pixels and forces recognition to “slim down”. A quick look at the pictures In

S Appendix I, however will convince anyon . that most of the regions in this domain are
shaped exact ly the opposite: large on the bottom and small on the top. Therefore, size
knowledge only serves to reject regions that would otherwise be correctly labeled.

Size know ledge is wro ng for this task and this search order. However , it Is not
necessarily wro ng for all uses of Locus search.

5.3: UNSEGMENTED SYSTEM: RESULTS 
S

S 

In addition to the experiments described in the last section, there were the following S
.5 experimental results:

The per-pixe l penalty for violations of location knowledge was determined
to be 5 (on a scale of 0 to 255, see section 2.4.3.7). This means that PPEs
that are matched to pixels which are n pixels outside of the location
boundary will have their path likelihood penalized by Sn. Penalties less
than this did not adequately enforce location knowledge and penalties
greater than 5 damaged the search by decreasing the importance of other
factors in the path likelihood equation.

The per-pixel penalty for violations of dimensional shape knowle dge was
determined to be 5 for sim ilar reasons of relative weight in the path
likelihood equation.

The relative weight of optical matches was determined t o be 200. This
means that the difference between the best and worst match of a PPE to
a pixel is 200. Thus, It takes other factort totalling over 200 in value to
override a signal-to-symbo l match in the path likalihood equation.

The optimal size of the beam was found to be 25 entr Ies. This Is the
smallest beam size that the system could use without damaging th. search.
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It was determined by reducing the size until the labeling quality started to
decline. S

The criterion for beam pruning was set to 100 below the current best
beam entry. Thus, a candidate for beam entry is rejected if its value is
more than 100 greater than the current best member of the beam. S

Cutoffs greater than 100 allowed too much into the beam and confused
the search. Cutoffs less than 100 pruned too severely and tota lly
damaged the beam.

Once tuned, ARGOS labeled the seven training images and eight test images shown In
Appendix I. These runs used unsegmented images and performed an object
identification task. In an attempt to provide a more global evaluation of these results ,
the system compared segments in the output of ARGOS to segments in the human
labeling. It then computed the percentage of the image that was labeled correctly.
For example, if a machine labeled pixel does not agree with the human label but is part
of a larger segment of machine labels that do agree , then that pixel is considered to be
correct. This evaluation avoids minor inconsistencies in the human labeling.

Prior to the above evaluation, all of the output of ARGOS is smoothed with three
separate ope rations. The first step is simple smoothing (Ejiri, 1971) which takes any
sing le pixel that is surrounded by many pixels of a different label and changes the
label on the center pixel to that of its environment. The second step throws out any
region with less than eight pixels. These pixels become unlabeled because they do not
form a large enough area to have meaning. The third step fills in any unlabeled holes
in a region. The unlabeled area must be completely surrounded by pixels of the same
PPE to be filled in with that label. Since there are no “contai nership ” rela tionships In
the Pittsburgh images , this operation serves only to fill gaps in the labeling.

The numbers below do not consider unlabeled pixels. Instead, they are the percentage
of the labeled area that is correct. See Appendix VI for these machine (abelings and
the human labelings of all fifteen city scenes.

Training Image 2 Correct Test Image 2 Correct
1 77 1 67
2 89 2 84
3 83 3 78
4 73 4 65
5 69 5 87
6 46 6 90
7 94 7 84

8 15

Overall Aver age 76 71
S The overall average labeling quality is 732. If the two close-up scenes (training scene

6 and test scene 8, both of which scored badly) are removed from t hese statistics ,
then the training scenes achieve 812 accuracy and the test scenes achieve 792 S

accuracy. Overall accuracy on thirteen of the Pittsburgh city scenes is 802.
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5.4: PRE-SEGMENTED SYSTEM: RESULTS
. \

The version of ARGOS which uses pre-segmented images ran with many of the same
parameter settings as the unsegmented system. The task, however, was different.
Instead of training on the existing images to obtain high labeling accuracy, the pre-
segmented system implemented the two-level knowledge hierarchy discussed in
Chapter 4. For each image, there is a view angle identification run and an object
identification run. The following table shows the results of the hand-segmented images
In the view angle identification task:

Imafe True AnRle ARGOS Ana~ Errot
Training 1 300-315 300 0
Training 2 300 330-345 30
Training 3 240-255 330-345 75
Training 4 0-15 15 0
Training 5 0-15 330 30
Training 6 345 0 15
Training 7 45-60 330-345 60
Training Average 30

Test 1 315 195 120
Test 2 285-300 330-345 30
Test 3 300-3 15 240 60
Test 4 255 240 15
Test 5 45 0 45
Test 6 60-75 135 60
Test 7 60-75 0 60
Test 8 15-30 0 15
Test Average 51

Overall Average 41

Using a “favorite view” penalty of 25 on all transitions more than 450 from the
predicted view shown above, the following results were obtained in the object

S identification task. Th. actual output of test scene 5 is shown in Appendix VIL Note
that the numbers below measure the percentage of the image that Is labeled correctly,
not the percentage of the labels that are correct. Thus, the numbers are somewhat
lower than those presented in the previous section.
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Image Z Correct ?~ IncorrectTraining 1 72 12
S Training 2 74 7

Training 3 70 10
Training 4 - 49 22
Training 5 58 19
Training 6 37 54
Training 7 59 26 .5

Training Average 60 21

Test 1 27 44
Test 2 35 53
Test 3 41 42
Test 4 47 26
Test 5 79 11
Test 6 37 33
Test l 19 64
Test 8 20 73 -

Test Average 38 43

Overall Average 48 33

In addition to hand segmentations, ARGOS interpreted machine segmentations of the
same images. These - segmentations were obtained by a clustering algorithm (Shafer
and Kanade, 1978). The following table shows the results of the view angle
identification task.

j  Image True Ansle ~~QQ~~~gje ____

Training 1 300-3 15 345 30
Training 2 300 330-345 30
Training 3 240-255 0 105

- Training 4 0-15 120-135 105
Training 5 0-15 330 30
TraIning 6 345 330 15
Training 7 45-60 345 60
Training Average 54

Test 1 315 30 75
Test 2 285-300 330-345 30
Test 3 300-315 0 45
Test 4 255 255 0
Test 5 45 330 75
Test 6 60-75 345 75

.5 

Test l 60-75 300 120 5

Test 8 15-30 135 105
Test Average 66

Overall Average 60
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Using a favorite view penalty on all transitic.ns which are more than 600 from the
predicted view shown above, the following results were obtained In the object
identification task. The actual output of test scene 5 is shown in Appendix VIIL

Image 7, Correct 7. Incorrect
Training 1 40 32
Training 2 71 17
Training 3 40 41
Training 4 2 44
Training 5 42 22
Training 6 35 48
Training 7 55 15
Training Average 41 31

Test l 27 56
Test 2 31 49
Test 3 43 33
Test 4 43 43 -

Test 5 41 38
Test 6 - 34 44
Test 7 24 51
Test 8 19 74
Test Average 33 49

Overall Average 37 41

The machine segmentations were produced in the last weeks of this thesis research , so
S there was no t ime to tune the system for them. These poor results are presented for

S completeness sake only and should not be regarded with any disappointment.

.5 
S 
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CHAPTER 6: CONCLUSION

IL1 the previous chapters, Locus sea’ch was presented as a technique for image
understanding. Discussions demonstrated how knowledge can be added to the search
and how hierarchies of knowledge can be organized around the search. Finally,
experiments were described in which ARGOS labeled photographs of the city of
Pittsburgh.

This last chapter cleans up the thesis by discussing the results obtained from ARGOS.
It is as important to know why it fails as it is to know why It works. The chapter
finishes by summarizing, discussing, and concluding the thesis. -

S

6.1: ERROR ANALYSIS S

Three types of errors were made by ARGOS: errors of scale, errors of position, and
errors of shape. The errors of scale were caused by the varying sizes of objects in
the images. For example, the Hilton 

~~i~
j (“HI” in the appendices) ranges in size from

9 pixels across in training scene 5 (page A19) to 58 pixels across in test scene 8
(page A29). The errors of position include location knowledge errors and adjacency
errors. The later were the most damaging: all it took was one region out of place, and
a half dozen other regions were incorrectly labeled relative to the original erroneous
one. The errors of shape can be seen in all of the labelings as diagonal zig-zags on
the region borders. -

Before discussing these classes of errors, it is appropriate to mention the successes
that ARGOS achieved. The system did best on its identification of major parts of the
image. The ~~~~, the mountains, and the three rivers were almost always identified
correctly. This is due to the ease of identification on the signal and the symbol level.

Many of the apparent labeling mistakes were entirely reasonable. For example, the
S identification of Mscellaneous Buildinas (B) in the middle of the river which occurred in

training scene 2 and test scenes 1, 2, 3, and 5 (pages A16, A22-A24, A 26) Is entirely
reasonable since those areas of the river actually contain reflections of bui ldings.
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6.1.1: Scale Errors

Very often, labeled regions were in the correct place but did not cover the entire
original region. For example, notice the labeling of Q~j  Oliver E!ui (“00’) in test
scene 3 on page A24. The human labeling of the image indicates that this region Is
about 10 pixels wide and 20 pixels high. The machine labeling, however, shows the
building labeled with two small regions which together cover only 45 pixels. All of the S

S other pixels in that area are unlabeled which means that, although th, region was
correctly identified, only 25Z of it vies labeled.

One reason that this area was labeled with such small regions can be found in the
shape knowledge. The dimensional shape bounds for ~~~ Oliver ~jgj are 1-to-lO
horizontally and 2-to-40 vertically. Although this allows a 10 by 40 pixel region to b
labeled , it also allows much smaller regions to go unpena lized.

Two cures can be found for bad shape knowledge. The first cure requires that
hypothesized views be smoothed before knowledge is extracted. This way, jagged and
pointed edges of regions would not affect the dimensional shape counts. The second
cure involves more severe pruning of the data accumulated from the hypothesized
images. If, for example, only one of the lines through an object has a pixel count
below 5 and all other lines pass through at least 10 pixels, then the lower bound of
the dimensional shape should be 10 and not 5. This sort of extreme case rejection is
done to a modest extent now, but it should probably be done more.

Another reason that regions are labeled with incorrect size is that the hypothesized
views try to mimic the images but often fail. For examp le, notice that the Hilton ~~~~(“HI”) in test scene 8 (page A29) is nearly 60 pixels wide. The dimensional shape
knowledge for Hilton ~Qj9j penalizes regions wider than 36 pixels because it is
unfamiliar with such a close-up view. So the problem of bad shape knowledge is also
caused by bad hypotheses. This problem would not be as severe if ARGOS used a full
knowledge hierarchy because the size variations would be expected by the viewpoint
knowledge networks and would be correctly hypothesized after the viewpoint levsl
had run.

Another type of size error that was encountered is over-labelIng. This happened in
the distant views from the West (training scenes 4 and 5). For example, notice the
labeling of the 

~~ ~j,g~j  ~~ g, (“US”) in training scene 5 (page A19). The labeled area
not only covers the correct region, but spills over into about a half dozen other
neighboring regions. It appears that the same problem of incorrect hypothesis has
caused this size error.

6.1.2: Position Errors

How did a region of Miscellaneous Buildings (“B”) In training scene 1 (page A15) get
the label 

~~~~~~~~ RIver (“MR”)? One reason , which must hold true In all
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S mislabelings, is that they do have similar characteristics. The other reason for the
S 

mislabeling has to do with a sequence of bad adjacencles. Observe the labeling on the
left side of training scene 1. Once the ~~~ &L Parking Garage (“SP”) was labeled .
Miscellaneous Buildings, alt of the regions above that got labeled incorrectly. The first
error above that is the labeling of the E!~ Roosevel t ~~çj (“Pt”) as ~~~~ (“SN”). Both
are bright regions, so the mistake is not unreasonable. Finally, the top region in this
area is labeled Moriongahela River. Again, It is not an unreasonable guess, but all
three are wrong. it should be noted that the Monongaheja Ri~it is legal above Snow
which Is legal above buildings. Thus, this three-region error is locally consistent which
helps to reinforce the error.

Adjacency errors are started by bad signal-to-symbol matches and reinforced by local
adjacency constraints. Although Locus Is supposed to enforce global constraints, it Is
tuned to allow noise in the search which, in turn, generates local errors. The only real
problem with these errors is that they propagate and cause large areas to be
incorrectly labeled.

Bad location knowledge is another source of error. The problem is that location
knowledge is obtained from the hypothesized views and these views seldom align
correct ly with the city images. As a result, location knowledge which is not completely
generalized is often too specific AND WRONG. The results of bad location knowledge
can be seen in the pre-segmented images (Appendices VII and VIII) where a few
buildings (most notably Q~jj (“GUI) were labeled far too frequently. This is because
most of the other PPE5 had incorrect location knowledge causing their transition
likelihoods to be heavily penalized.

6.1.3: Shape Errors

The most distracting aspect of the unsegmented machine labelings is the irregularity of
the labeled region shapes. These regions have as many diagonal edges as they have
horizontal and vertical edges, yet the -regions in the cIty scenes and the hypothesized
views have very few diagonal edges.

One obvious reason for this is that all four directions of adjacency are given equal
weight during the search. Since all horizontal and vertical adjacenc ies can also adjoin
diagonally, It should be expected that an over-abundance of diagonal edges will be
found. This can be solved by determin ing an overall preference for each direction and
using it as a knowledge source. However, the real reason for most of the shape errors
is only marginally connected with the use of diagonal adjacencies. The culprit I.
backtrace conflicts.

S ~ j ring the backtrace, conflicts occur when the four surrounding pixels disagree over a
label assignment. Conflicts are not always resolvable, so many pixels are left
unlabeled. However, an unlabeled pixel does not contribute to the labeling of Its
neighbors: the select ion passes through th. unlabeled pixe ls and In many cases return s
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to th. conflict producing neighbors. Thus, It Is an artifact of Locus that one conflict
point can “generate” tines of unlabeled pixels emanating from the conflict in the four
directions of adjacency. These lines are th. major cause of zig-zag regions.

One way to eliminate this problem is to disregard b cktrace neighbors that are too far
away. Another solut ion requires more frequent conflict resolution. A third possibility
is simple smoothing of irregular edges. However, all of thes. solutions ignore
k nowledge constraints, so It can be expected that they will reduce labeling qualIty.
The only real solution is to completely re-evaluate the backtrace, perhaps adding some S

knowledge and search to it. 
S

In th. absence of a good solution to the prob lem of shap e irregularities , it Is possible
to smooth the regions. This would yield regular regions and would probably enhance
labeling quali ty.

6.1.4: Future Exploration
This section has pointed out a number of improvements that should (and probably will)
be implemented. Shape and location knowledge must be obtained more intelligently.
View hypothesis should be done with more of an eye towards the knowledge that is to

- be used (i.e. generated views should make meaningful knowledge easy to extract). A
better low-level system is needed to be able to distinguish the many different PPEs.
And, at course, PPE adjacency knowledge should be used more effectively, both on the
forward pass and the baclctrace.

I S

6.2: SUMMARY 
-

This thesis has described the ARGOS image understanding system. ARGOS is able to
use knowledge from maps of downtown Pittsburgh in the interpretation of photographs
of the city. It Is this use of knowledge that distinguishes image understanding from
image interpretation.

Application of knowledge requires that the knowledge and the - image be represented
with common units so that they may be matched. This common unIt, called a Primit ive
Picture Element or PPE, is the atomic image label. All regions of the image have unique
PRE labels and all components of the knowledge have unique PPE labels. Therefore
both the image and th. knowledge are expressible with this common unit.

The knowledge used by ARGOS is organ ized into networks of PPE nodes. A connection
between two nodes IndIcates a physical adjacency of those PPE regions In the Image.

1

. 
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Information is associated with the connections specifying the nature of the adjacency.
In addition, information is associated with each PPE node that describes the size,
shape, location, and optical characteristics of the region in the image. It Is the task of
ARGOS to find the correct path through the network which corresponds with each
image. This path is equivalent to a labeling of the Image.

Determination of the correct network path is done with Locus search. Locus is a
powerful search technique that was used successfully by the Harpy speech system

- (Lowerre, 1976). Locus is called a “beam search” because It builds a highly pruned
search tree of labeling alternatives which resembles a beam. Each step along the

S beam corresponds to a different part of the image, and the various PPE possIbilities at
each step are the possible label alternatives for that part of the map. Determination
of beam entries is based on a recursively defined ‘path lik&ihood” which contains
information about (1) the absolute similarity between the PPE characteristics and the
characte ristics of that part of the image, (2) the network connections to that PPE node,
and (3) previous entries in the beam.

Th. third component of the path likelihood equation is the recursive aspect of the
beam. It gives Locus a first-order Markov flavor and it allows the beam to be
constructed in one pass through the image. It is one of tb~ significant contributions of
this thesis that some of the first-order Markov nat is retained even though the
image is not linear. The fact is that there is no way to sc ‘ throug h a two-di mensional
image that will allow each new part of the image to b& - ~‘nt to the previously
examined part and no other. This topology problem c~’ t h e  .~arkOv assumpt ion to
be heuristically modified so that eli o4jacent areas in tt .55~ 

- ge are considered to be
the immediately previous node.

S Given that a beam of node connections has been built with only one scan of the image,
a backwards scan (the backtrace) then examines the beam in reverse order and selects
a unique labeling from the beam options. This labeling contains global constraint
knowledge since It is backing up a recursive chain and therefore can select on the
basis of knowledge about the entire chain. The final labeling result is only sub -optimal S

because of the pruning that is done in the creation of the beam. This pruning is a
S heuristic of Locus search that allows great space and time savings at a negligible cost

In accuracy. -

The backtrace of Locus search also suffers from the top ological problems of images.
This thesis has explored a number of options for resolving the path inconsistencies
that are caused by multiple adjacencies during the backtrace. Most of thes. resolution
techniques are able to work with local knowledge but some proposed alter natives
require global information about the image.

Tb. thesis has also explored th. need to use many networks and many “passes” of
Locus search in the complete identification of an image. It is exp.cted that a level of
visual knowledge on the order of a human’s would requir. hierarchies of knowledge
networks which would successively narrow the interpretation options down until a
labeling was found. The levels of analysis would proceed from scene IdentifIcation to
viewpo int Identification to object identification. It Is even expected that a form of
Locus search could be used to guide the selection of these knowledge networks.

S 
~~~~~~~~~~~~~~.



In addition to the abstract presentation of Locus, th. thesis has presented the
experimental results of ARGOS. When given city maps and training images, the system S

was able to identify major components of pictures of downtown Pittsburgh. It not only
was able to select the proper viewpoint but It achieved less than 20Z error by area in
the labeling of totally uncontrived photographs of the city.

S 6.3: DISCUSSION

The graph structure representation of Locus is a natural outgrowth of work in
languages (Aho and Ullman, 1972), graph representations (Harlow, 1973), and syntax
directed pattern recognition (Narasimhan, 1966; Clowes, 1969; and Fu, 1976). The
Locus approach principally differs from the above in how the network representation
is to be used. It rejects the notion that image recognition is best viewed as a problem
in parsing . Given th. error and uncertainty associated with the decisions, the problem
tends to be not one of deciding whether a given pattern is parsable but rather one of
search , i.e., deciding which of the many acceptable alternative paths represents the

S near-optimal interpretation.

The view that the problem of image recognition is one of constraint satisfying search
has been gaining increasing acceptance (Waltz , 1975; Tenenbaum and Barrow, 1976;
Rosenfeld, Huminel and Zucker, 1976). Locus also subscribes to this viewpoint and
differs mainly from the other efforts in the representation of constraints and the
method of search.

The realization that it is important to introduce some measure of the degree of
uncertainty into the interpretation process is reflected in the papers by Fischler and

S - Elschlager (1973), Feldman and Yakimovsky (1975), and the probabilistic relaxation
methods at SRI and the University of Maryland. Locus is able to handle search in the
presence of error and uncertainty in a natup al ;nd straightforward manner provided all
knowledge and constrainti are represented in terms of a graph structure.

The best-first search given by the As algorithm (Nilsson, 1971) and the breadth-first
graph search of the dynamic programming algorithms (Levine, 1977; Bellman and
Dreyfus, 1962) provide alternative approaches to optimal graph search problems. The
beam search technique of the Locus model provides a minimal effort near-optimal
solution. It appears to be effective In cases where the evaluation function Is
dependent on an external signal source and where a large number of decisions are
related to each other as they attempt to provide alternativ, interpretations of the
same signal segment.

ARGOS is significant b.cause it is able to label highly complex scenes. Although much
work lies ahead for image understanding by computer, experience with ARGOS adds
another step to our understanding of the application of knowledge, and ultimately to
our understanding of human vision and the human brain.
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6.4: CONCLUSION

S This thesis has made two contributions: lhe modification of Locus search for image
understanding and the development of ARGOS as a working image understanding S

system. Each of these contributions encompasses a number of smaller results and
observations. S

Modification of Locus involves a heuristic to handle the two-dimensionatity of images.
Implementation for the speech task used a linear search tree that could be built and
backtraced in a well-defined manner. The first-order Markov nature of Locus allowed

• each element of this tree to be dependent on the one previous element in a strict
recursive manner. In ARGOS, this first-order Markov assumption must be changed by
the complexity of the signal. Locus now becomes an “adjacency first-order” Markov
system that uses a.U surrounding elements both on the forward pass and the backtrace.

Modification of the forward pass involves the inclusion of all adjacency directions in
the path likelihood equation. This is done by averaging each direction’s contribution.
in images that are broken down into a grid of pixels, there are four neighbors to be
considered (assuming a raster scan and physical adlacency of all neighbors). Images
that are segmented into varying sized and shaped areas have a vary ing number of
neighbors located at arbitrary positions in the search tree.

The backtrace also runs into issues of image topology. Because there are a varying
number of neighbors in the forward pass, the backtrace follows a varying number of
paths as it climbs the search tree. These paths frequently join together with differing
results, generating conflicts in the global path. A number of local conflict resolution
techniques were explored and some global methods were proposed. Those covered in
the thesis are: relational network consistency, directional preference, voting, and the
use of size, shape~ and location knowledge.

In addition to the basic Locus search, the thesis has explored the addition of various
knowledge sources. Using a three-dimensional model to generate hypothesized two— S

dimensional views, ARGOS is able to extract object location, size, and shape. In
addition, it is possible to hypothesize the two-dimensional views in a hierarchical order
starting at scene selection and proceeding to viewpoint selection and finally object
identification. II is believed that this hierarchy can be used to apply massive amounts
of knowledge to the interpretation of images.

The final result of this thesis is, of course, the output of ARGOS. The system was
trained on seven images of downtown Pittsburgh. Another eight were saved for test
purposes after the system was tuned. The training images were labeled with 582

S accurac y and 182 error on a pixel basis (some pixels were left unlabeled). The test
images were 482 correct and 222 incorrect. In addition, ARGOS was able to correctly S

identify the major components of almost every image (only three of the fifteen showed
a lack of “understanding” by the system). In a view angle selection task , the system
identified the angle of view with an average error of 400. ARGOS has therefore
demonst rated the applicability of Locus search to the image understanding task.
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APPENDIX I: Original Photographs (continued)
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APPENDIX I: Original Photographs (continued)
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APPENDIX I: Original Photographs (continued)
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APPENDIX II: Primitive Picture Elements

This table shows all of the primitive picture elements- (PPEs) that were selected for the
object identification labeling of the Pittsburgh images. The symbol column is the
identifier used In the abelings in Appendices VI, VII, and VIIL The trainina imase
column reports which of the seven training images were used to extract signal-to—
symbol matches for that PPE. Note that four of the PPEs (Pittsburgh National Bank
Operations Building, Jenkins Arcade Bldg. ~~scellaneous Bridges, and Federal BIdg) did
not appear in any of the photographs, and were therefore not trained. Note also that
the Blue Cross Bldg and the Grant Bldg were trained from test image 5 because they
only appeared in that image.

EEE...N!~i Symbol Trainln2 Imaie

Riv.rw *ll.~hony River AR 2 
-

Monon 1,liul, Riv,r MR 7
Oliio Riv,r OR 4

Brid5.L Fort Du~uu.n. Bride. 08 4
Fort Pitt Bride. - P8 4
Hinth Ave. Brid5s NB 3

SIJI*II Ave. Brid’e SB 2
• Sbonwu’ SI. 8r~d e  R .flsnhI ST 7

I$,csll.n.. .,, Brld e. • MB S

Rood.. Fort Duqu..ri. Blvd. DV 4
F.,t Pitt Blvd. PV 4
I~,c.llsn..ui Rood. P 7

Gerqesz Ei~litb Ave. PsrkNl EP 2

Ninth Ave. Perkil, G.r.5. NP 3
Slidh Ave. Parkln~ Gin1. SP 2

Pick Re..,v.lt Metal P1 2
Pit tebur~l, Hilton Hotel HI • 4 

-

S BIlks. Equ~seli 8ld~. EQ 2

Mellon Netionsi B.nk BIdf. ME 7

Piitubu~ih N.tion& B.nk BIdE. PH 7
Piltuburik Nelu’.ISI Bank Op.r.tiooo B1d5. P0

Store. Giuèsl, D.~i. SI.,, Cl 3

Jonki.. Arc.~~ Bldg. JN
Joospk Horns. D. t. St.,. HO - 2

C.. ......n ts Fodent Bldg. Pt
Psna.yS.~sM Slit. Office Bldg. SO
PesceytueM Slit. Office Bldg. Lnkky Si. S

OsI.w.~, T.wsrs A .rtmoote CT
Ponlk.u. A srtu,ents PE 2

AS 
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5vmbol Ir.~i±&Jrn.8gs.
Misc. Offices: Alco. Bldg. AL 3

Allegheny Tower. Bldg. AT 2
Bull Teisphen. C.. Bldg. BT 3
Blu.Cr... Bldg. 81 Teet S
Fu$lon Bldg. Ri 2
Gateway Center Bldg. 1 GA 2
Git.wsy C.,its,B1d5 2  GB 2
Gd.w.y Cm l., Bldg. 3 CC I
Gat.w.y Center Bldg. 4 60 5
Grant Bldg. CR Tad 5

S GuH B$dg. • GU 3
LB. M 8ldg. lB S
Koppers Bldg. 3
Mi.c.ll ~ .ou, Building. B 7
Oliver Bldg. • 01. 4
On. Oliver Phi. 00 2
Penn T.chmc.i Cantor PT 3
Plltáurgh Pp... PR 4
Ruat BIdg. RU 3

Sbietd. Rubber Bldg. SN 7
US. Stool Bldg. US 4
Umt.d Engineering & Foundry Bldg. UE 3

We.tinghou.e Bldg. WS 7

Wsstinghou.. Pt... WP 7

Mi.c.llsnsous. Mouni.ine M 4

Park P 5
Sky SK~ 7
Snow SN 7
Three River. Stadium TR 5
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APPENDIX II: Primitive Picture Elements (continued)

This table shows all of the primitive picture elements (PPEs) that were selected for the
view angle identification task of the Pittsburgh images. The symbol column is the
identifier used in the labelings in Appendices VI, VU, and VIII.

PPE Name Symbol

All.ghony River AR
Grant Bldg. - CR
Gulf Bldg. CU
Mellon National Bank Bldg. ME
Miacefl.n.oum Blids.. MS
Misc&l.n.ou. Building. B
Mi.c.bhn.oue Road. P
Monong.lwIa River MR
Mounlain~ U S

Ohio River OR
On. Oliver Ph i. 00
Pork - P
Sky SIC
Thre, River. Stadium TR -

U. S. St.el BIdg. US —

W..tlnghouee Bldg. WS

Al
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. - . S.. - -
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APPENDIX IV: DIGITIZED CITY MAP
This is the city of Pittsburgh as ARGOS sees it. Notice that the rivers and roads aresegmented into smail pieces. This is because the map is 3’ by 2’ and had to be broke ndown into more manageable pieces before , digitizat ion. Notice also that the 

~~~ andmoun tai n reg ions are represent ed as lines tha t surround the city limits. Whenhypothesized views are generated, thes. lines form “backdrops that correctlyrepresent the regions. The large regions in the center of the city are misceltanep~gbuildings.
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APPENDIX V: GENERATED VIEWS g
This is the view of the internal model that was generated to simulate training scene 2. 1It was taken from a declination of 10 (1~ above the horizon) and a right-ascension of
300° (where right-ascension of o° Is due west and Proceeds counter-clockwise). The -large three-piece region in the background is the ~~~
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APPENDIX V: GENERATED VIEWS (continued)

This is the view of the Internal model that was generat ed to simulate training scene 3. 
- -It was taken from a declination of 2° and a right-ascension of 2450. - 
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APPENDIX V: GENERATED VIEWS (continued)

This Is th. view of the internal model that was generated to simulate training scene 5.
It was taken from a declination of 5

0 and a right-ascension of 10°.
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I APPENDIX V: GENERATED VIEWS (continued)

This is the v iew of the Internal model that was generated to simulate train ing sc.n . 6.

I It was taken from a declinatIon of 5° and a right-ascension of 3450~
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APPENDIX V: GENERATED VIEWS (continued)

This is the view of the internal model that was generated to simulate traini ng scene 7.
- It was taken from a declination of 30 and a righ t-ascens ion of ~~~
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APPENDIX VI: I4~.iman and ARGOS Labeling, Training Scene 1

View: Northwest 
- .

AR: Allegheny River - 
-

AT. Allegheny Twie -

B: Mivc Bldg.
08: Duqusans Bridge
DV: Ouqu.er.. Blvd - 

- —
EQ. EquRiank — - 

-

Fth Fultee Bldg 
5 

- - — r . ’

~ ~~~~~ ~~~

-

GC: GM.way 3 —
•‘

~~ ~~~~~~~~~~~~~ 
—_~———J !CT: G.t.way T.wera ~~_~~~~~_~~~.~~~~~__

— 
~~~~~~~ Ii

S 
- HO: Horns. Dept Store - I ‘ —

~~~~~~

— 

~~
. 

~ S 
-r •• 

-

ME Mellon Bank ‘ —, I I I 
_____

MR. M shale River S __ i 
—

00: O,* Ohver Plaga ~~~ ~~‘OR. Ohio River
PE: Psntbou.. Apt. 

- 
-

PT: Pick Roo~~v.lt Het.I
• 

- PN: PH tshu,lh National Bank
59: 8th Ave Bridge -

SlC: Shy
SN Snow
SP: Ith Av.Psrking -

US: U.S. Steel 
__________________________________________________
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APPENDIX VI: Human and ARGOS Labeling, Training Scene 2
I p

View: Northwest

AR. Allegheny Rivsr : -

AT’ Allegheny Twr. ‘ : ,

B: Misc Bldg. - 
—•.=---. — 

-

09: Duqueen. Bridge - - 
- 

- 
- - .

DV: Duque.n. Bh.d — r’.~ ~~~~~~~~ 
‘
___  - :

EP: $th Av. P.rkmg — 
__

~~~ 
- 

~:—
EQ EquBsek 

~~~~~~~~~~~~ 
I - ~~~~~~~~~~~~ ~~~~ - 

—

PU. FuHoe Bldg ~ ~~~~ I~~ -: _.~~,I;.~~~ ~ r
GA: Gateway l 

____  

Lr~ 
U-

GB: Gateway 2 -.

GOt Gai.w.y 4 - 
•

- 
_ _ _ _ _ _ _ _ _ _  

- _ _ _ _ _ _

GUz GuIf BIdg - - 1

HI: Hilton Hotel .5 
- 

S

NO: Horns, Dept Store
MR: Monongahela my, S

00: On. Olivs, Pl.~. 
S -

PE: Penthouse ApIs S

Pt: Pick Roo.ev,lt Hotel
59. 8th Ave Bridge
SK Sky
SN: Snow -

Wi •th Av. P.rkin~ 
- 

- 
S

US. LLS. Steel --

- U — -
- — — . 5’  — S — — — .5

— I , — - —
. — __I

- - 
U-
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APPENDIX VI: Human and ARGOS Labeling, Training Scene 3 
-

I p

View: Northeast - 

S S

S 

AL: Alcoa Bldg i.e 
S

AR: Allegheny River :~ -

B: Misc Bldge — —
BT: 9.11 Telephone — —

08: Ouque.ns Bridge — 
- 

- 
- 
—•• . I — -

EQ: EquB.nli —— ~- _____ 
_-

~~~~~~~~ S

GA: Gateway I - H ~
_ .__ . —~~~~~~~~‘ :~~~~~~ -_ 1

01 Gsmb.le I 
~I•~~~ 

•‘ I I — I 
~~~~~~~~~~~ 

— — — —
01: Gateway Tower. 

_____ 

• 
-i j-~ _

~~
- -

~ .~~~
-
~~~~

-
_ j ;  j ; -~ 

- 
~~

— -
~~~~~: :

GUt Gulf Bldg — 
— I L.J’.i ~~ 

U I ,~~~ _ I ~~.HI: Hilton Hotel 
~ 

‘
~~~~~~~~~~~~~~~~

_ ~~~ 
s ‘I -• 

—

~L~—1-~--- 
‘ —

~~
_

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
-

~~~~~--_ _

S

Mt Mount.inu I - 
S 

~~~ :1-sME: Mellon Ban& ii iiJ~ !!
NB: 9th Av, Bridge I
NP: 9th Av. Pirking - 

- - — I

00: On. Oliver Plaza 
_____ ________________

PT: Penn Tech Inst I - 
—

S RU: Ru.t Bldg
5K. Sky
UE United Engrneerieg
US: U.S. Steel S

U— —

— •5
- -

~~~
-

_

;-
~~~~~~
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—

—

- 
- ;•-• 

.5— 
I-

I — -

L, k, 
~~~~~~~~~~~~~~~ 

-
:

S 

~~_ 
I__’•~ 

‘-... —i- — 
— 5.— — — -.5

-

~~ .1 ~~~~~~~ ~~
-..-—.... —

~~~~
—

-

•  ‘ 
-~~~~ 2$ ~~~s 

— 

- 
U

L ~~\~ .r’_ \ J — L —

*17

L _ _  ~~~~~~~~~ ___________ _ _ _ _ _ _ _ _



—5-- S  - S ~~~~~~~ ‘ ~~~~~~~~~~~~~~~ ‘ -— -

I

APPENDIX VI: Human and ARGOS Labeling, Training Scene 4

View: West -

AR: Allegheny River - 

- -

B: Misc Bldg.
01: Blus Cro., _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ____

..
—

OB: Duqu..ne Bridge ______- — : -.. =DV: Duqu..ne Blvd - 
— 

— I - • .

(Q: EquBanli ____  - 
-

~~~~
GA. Gateway 1 q 

‘
- I.4~ . __.~~~ 

-

GB: Gatew.y 2 ‘••
~~ ‘~~~~~~~4- I~ I II —

CC: Gateway 3 
— ~~~~~~- 

- ~~ ~~ - I~ ’ ~j j  • 
.J1

GOt Gateway 4 - “.~~~~
____ 

~~~~~~~~ ~~~~~~~~~ 
‘ ______ - -

Is-O i ~~t i_  S — 55 1 _~~~
_. — —.,ran u.~~~ - i I - —Il— —

CT: Gateway T.w,ru u-_i - — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ - —

GLh GuH Bldg I — — --

HI: Hilton Hotel h____
~~_ ,

__
.~p::F~ _________

ME: Mellon Bank ‘1-
~~~_______________

MR: Monongabsla River
NB: 9th Ave Bridge - S

00. On. Ohver Pleza p Th~~~~~~~~~J~~~ J P_
~~~ 

-

PB: Fort Pitt Bridge 
U- 

-

PH: Pittsburgh National Bank
PR. Pittsburgh Pr... 5 ...
SK: Sky 

- 

. I

SL: Stale Off ice t.obby - -

SN: Snow
SO: Stat. Off ic. Bldg -

US: U.S. Sl..l - 
— _

— - 
~~~

_ .__— __ _ — -u
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~~~~~~
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APPENDIX VI: Human and ARGOS Labeling, Training Scene 5
55

View: West

S 

AR: Allegheny River
S B: Miic Bldg. - 

- -

DBs Duqueans Bridge
DV: Duqu.ane Blvd —
EQ: Equbank S S S

GA: Gateway 1 - —
GB: G.i.w.y 2 S 

— — ~~~~~~~~~~~ ~~~~~
- :

CC: Gateway 3 
~~~~~~~

__j —
__~~~~~~~~ 

wa.~~~~~~_~~~UGO: Gateway 4 ________  ii ___: ; — iTh 
-

CT: Gat .way Towe r. —
‘__• • s  — •_ i

•
S~~ S —

CU. Gulf Bldg 55 -
U- ~ i~~~~~~~~~~~

_
~ 

~~~~~~~~~~~~~~~~~~~HI: Hslton Hotel I — _~~~~~~~~ ...f 
_________ 

.J J • 
S_______

• NO: Horns. Dept Store T
’ 

‘
~~~~~ 

— _~~~~~
— 

—
~ 
—

ID: 
- - 

~~VS 
Mall.,. Bank 

River 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fed P~~ Bridge 

US

PH: PIttsburgh National Bank - 
S 

• -

PR: Pittsburgh Presa
SO: 6th Ave Bridge .5
SK Sky
SI.: SIat u’Offi cs Lobby
SPf. Snow - 

S

SO: State Off Ice Bld~TR~ Three River. SI.
US. LLS. Stael - 

- 

: -

- 

-
~~~~~~~~~~

- L~ ~~~~~~~~~~~~~

‘

~~~~~— - - ~~.— L 1 —~~~~~~.——---— —
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:~~~
—

~,_ I _— — - 
-

I .. ft I

- 
~~~~~~
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APPENDIX VI: Human and ARGOS Labeling, Training Scene 6

View: Point 
U-

AR: Allegheny River -

9: Misc Bldg. ‘ ..~~~~~~~~~._ ._.. S

GO: Gateway 4 - -
~~~~~~

— -

EQ Equbank - 

-s -

HI: HIlton 14.1,4 - 
: S S

HO: Horns. Dspt Store - 
— 

- 
S

IB: I.B.I( Bldg 5 — —~~ - 
________

M: Mountains L_ ~~ 
—

MR: Monongahe la River 
______

Pt Park
PR: Pittsbur gh Pr... -~~~

SK: Sk y ,
SI.: Stale Off ice Lobby - J U- - $
SN: Snow - 

-

SO: Stats Office Bldg ____________________ 

I _ I
_

l~

US: US. SIeel 
- 

_ _ _ _ _  

Ji

- 
~._

r~ I~~~~_. 
.5 I

—I I I~~
~1..~ 1 i—,

:1 

_
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~~~~ 
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APPENDIX VI: Human and ARGOS Labeling, Training Scene 7

View: Southwest

S - AR: Allegheny River
9: Misc BPdg. 

______09: Duqu,an. Bridge - -s,--

£Q: Equibank
GA: Gateway 1  - — - —

GB: Gateway 2 — 
- 

____ 

-5 _________

CC: Gateway 3 -
~~-- s

~~~ ~_ 
, 

, 
- 

~~~~..— - —.5 — — — , — — , — S — I — ‘ — S — - —CT: Gateway Towers , - -
~~~~-,j —~~~~ I I 

~~~~~~~~~~~~
CU: Gulf Bldg - .-T i:r.~~~

.=t ~~~~~~~~~~~~~ ‘ 1 i 
U

141: Hdlon Holel I! I! II t J j  ~ —~~~
M: Mo~jntain.  L -  —

ME: Mellon Bank - -. r it ~~~-

MR: Mononph.ls Rivep 
I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .5 ~~~~~~~_~~

__
~~~~~~~~

OOi On. Oliver Plaza 
____________________ - ~~~

— -
~ 

______________
OR~ Ohio River L _ r — —~~~~~~~~~~~~~P~ Park
P8: Fort Pitt Bridg. - 

-

PH: PHtaburgh National Bank

- 

_ _

_ _

Rubber Bldg - 
i— -

SN: Snow I
SO: Stale Office Bldg
SI: Stanwis. Bridge
US: U.S. Sleet -

WP: West ing house Plaza
WS. Westinghouse Bldg -

_ _  —

. 5-
-- - —

-
-

S - — - - — ~—. -:
~.~

- - - -:• -‘

- _ _ _
— 

~~~-: —_-T
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APPENDIX VI: Rarnen and ARGOS Lebeling~ Test Scene 1

Vi•w: Northwsst

• 
~: Z ;  ~ 

____

~

i
B: M.c Btdge ~~~~~~~~‘ • __ .‘_~~.. —~~~~
08: Duqu.. n. Brid~. 

! — 
—~~~~~

DV: Duqu.vi. BJvd 1

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~: ~~ ~~~~~~ . 
I ~ r~~~_J~~~~ J

HI: Hilton Hotel ) I
HO: Horn., Dept Store 

• 
________________Mt Mononiahel. River [ 

~ 
_______________

00: One Otiver PISE. _______ ______

P: Park .1 1 I I
PE: P n f  houss Apt.
P1: Pick Roosevelt Hotel
PN: PWsburth N.tion.l Bank
Ski Sky
S~4 Snew
SP 8th Av. P.,km~
t~ : UI Stssl

— 

•

r
I •_~~~ — —= ~~— —
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APPENDIX VI: Human and ARGOS LabeHn& Test Scene 2

View: Northwest

AR: AI$sgl~eny Rh’er
AT: ANs~h.ny Twr.
B Mi.c B1d~. H 

___

DB: Duqu.en. BrIdge - -~~~~~~~~

DV: Duqu..n. Blvd : _____ 

_____£0: £qulbsn& r ‘. 
~~~~~ :—_—

FIJ fton Bldg .... . ~~~~~ L.L s iL...__— .  IGA: Oslowey 1 ~ ~
... j I— 

~~~~~~~~~~~ ,~~~~~~~~~~~~~~~GB: G.lvw.y 2 j 
~~~~~~~~~~~~~~~~ rJ I

GC G.t.w.y 3 
~J L., I - :

~~ Gst.way 4 fl~ ~~~~~~~~~~~~~ 

_____

Dl: GM.wey Tow.,, 
________________________________________ - 

—

HO: Horn.. Dept Store
N: M.u.daI ~,NP: Nonongehels River
00: On. Oliver Pl z.
OR: Old. River -

P: Perk
Pt: Penthou se Apt ,
P! PICk Roosevelt Hotel
PN: PIftubu,~h N.ti.nsl Bank
Skz Sky -

• SN Sn.w _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

$P: 5th Ave Parking

• 
LL 

- —

• 
I) 

~~ 
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j
r~~~~~~~~~~~ H 
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APPENDIX VI: Human and ARGOS Labeling, Test Scene 3

Visw: Northwest

AR: Allegheny R1~.,B: Misc Budge • 
-

OR: Duqu.w. Bridge 
— 

• 
-

• DV: Duqusen. Blvd - -- 
• 

• — -
EP: 5th Ave Parking • 

• • • _- =
£0: Equè.nli — 

_____

FU Fultoø Bldg 
• • •

GA: C t.w.y l I I! • I~CLh GuH Bldg II ~~~~~~ -HI; Hilton H.t.l
I r~~T i j -r~~I I’.. 1HO: Horn.. Dept Sto re • ‘ • 

-- ~~ ~~~~~ —~~~~~~~~~ --—
NP: Non.ngsh.la River 

~~~~~~ III • •1

00’ On. Oliver Plees I 
_______ 

-
•

P1: PIck Roosevelt Hotel h J U t  I i
~~~.T1PN: PHtiburgh Nationel 8s.ik i~—~ LSB: SHI Ave Bridse t__ - •• SK: Sky “• 

____________  • Ii
SN Snow ________________________________________________ _________________________
SP: 5th Ave Parking
US: US. Steel 

-

H ~~~~~~~ _

L 
_ _ _ _ _ _  _ 

~~~- -

• 
~~~~~~~ ~~,

~~~~~~~~~~~~~~~~~ 
- ~~
“

~~~~
• 

_

*

•

~~~~
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APPENDIX VI: Human and ARGOS Labeling, Test Scene 6
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APPENDIX Vi : Human and ARGOS Labeling, Test Scene 7
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APPENDIX VI: Human and ARGOS Labeling, Test Scan. S
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APPENDIX VII: ARGOS Labeling of Hand Segmented Test Image 5

• This Is the labeling output of ARGOS when given the 16 hand-drawn segments which
comprise test image 5 (see page A26). Notice that one segm ent was left unlabeled.
Although the major components of the image were correctly identified (SKI US, B, PV,
MR), many smaller segments were incorr ect ly labeled due to Incorrect know$edg.
sources.
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APPENDIX VIII: ARGOS Labeling of Machine Segmented Test Image 5

This is the labeling output of ARGOS when given the 67 segments produced by an
automatic clustering algorithm (Shafer and Kanade, 1978). ARGOS was not trained to
handle these automatic segmentations , so the labeling quality is poor. This result was
generated as the thesis went to press arid is Included only for th. sake of
completeness.
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